482 research outputs found

    La lutte contre les feux de forêts

    Get PDF
    A l'occasion de la publication du n°100 de la revue Forêt Méditerranéenne, il a été demandé aux grandes institutions nationales qu'elles nous présentent leur vision des espaces forestiers méditerranéens "depuis Paris". Cet article nous donne le regard porté par le Ministère de l'Intérieur sur la forêt méditerranéenne

    Link between laboratory and astrophysical radiative shocks

    Get PDF
    This work provides analytical solutions describing the post-shock structure of radiative shocks growing in astrophysics and in laboratory. The equations including a cooling function ΛρϵPζxθ\Lambda \propto \rho^{\epsilon} P^{\zeta} x^{\theta} are solved for any values of the exponents ϵ\epsilon, ζ\zeta and θ\theta. This modeling is appropriate to astrophysics as the observed radiative shocks arise in optically thin media. In contrast, in laboratory, radiative shocks performed using high-power lasers present a radiative precursor because the plasma is more or less optically thick. We study the post-shock region in the laboratory case and compare with astrophysical shock structure. In addition, we attempt to use the same equations to describe the radiative precursor, but the cooling function is slightly modified. In future experiments we will probe the PSR using X-ray diagnostics. These new experimental results will allow to validate our astrophysical numerical codes

    Wavelength-Dependent UV Photodesorption of Pure N2N_2 and O2O_2 Ices

    Get PDF
    Context: Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. Aims: N2N_2 and O2O_2 are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption. Methods: Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure N2N_2 and O2O_2 thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic N2N_2 and O2O_2 isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. Results: N2N_2 photodesorption mainly occurs through excitation of the b1ub^1\sqcap_u state and subsequent desorption of surface molecules. The observed vibronic structure in the N2N_2 photodesorption spectrum, together with the absence of N3N_3 formation, supports that the photodesorption mechanism of N2N_2 is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, O2O_2 photodesorption in the 7−13.6 eV range occurs through dissociation and presents no vibrational structure. Conclusions: Photodesorption rates of N2N_2 and O2O_2 integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between 10310^{-3} and 10210^{-2} photodesorbed molecules per incoming photon.Astronom

    X-ray photodesorption of complex organic molecules in protoplanetary disks -- I. Acetonitrile CH3CN

    Full text link
    X-rays emitted from pre-main-sequence stars at the center of protoplanetary disks can induce nonthermal desorption from interstellar ices populating the cold regions. This X-ray photodesorption needs to be quantified for complex organic molecules (COMs), including acetonitrile CH3CN, which has been detected in several disks. We experimentally estimate the X-ray photodesorption yields of neutral species from pure CH3CN ices and from interstellar ice analogs for which CH3CN is mixed either in a CO- or H2O-dominated ice. The ices were irradiated at 15 K by soft X-rays (400-600 eV) from synchrotron light (SOLEIL synchrotron). X-ray photodesorption was probed in the gas phase via quadrupole mass spectrometry. X-ray photodesorption yields were derived from the mass signals and were extrapolated to higher X-ray energies for astrochemical models. X-ray photodesorption of the intact CH3CN is detected from pure CH3CN ices and from mixed 13CO:CH3CN ices, with a yield of about 5x10^(-4) molecules/photon at 560 eV. When mixed in H2O-dominated ices, X-ray photodesorption of the intact CH3CN at 560 eV is below its detection limit, which is 10^(-4) molecules/photon. Yields associated with the desorption of HCN, CH4 , and CH3 are also provided. The derived astrophysical yields significantly depend on the local conditions expected in protoplanetary disks. They vary from 10^(-4) to 10(-6) molecules/photon for the X-ray photodesorption of intact CH3CN from CO-dominated ices. Only upper limits varying from 5x10^(-5) to 5x10^(-7) molecules/photon could be derived for the X-ray photodesorption of intact CH3CN from H2O-dominated ices. X-ray photodesorption of intact CH3CN from interstellar ices might in part explain the abundances of CH3CN observed in protoplanetary disks. The desorption efficiency is expected to vary with the local physical conditions, hence with the disk region

    Highlights from the 6th International Society for Computational Biology Student Council Symposium at the 18th Annual International Conference on Intelligent Systems for Molecular Biology

    Get PDF
    This meeting report gives an overview of the keynote lectures and a selection of the student oral and poster presentations at the 6th International Society for Computational Biology Student Council Symposium that was held as a precursor event to the annual international conference on Intelligent Systems for Molecular Biology (ISMB). The symposium was held in Boston, MA, USA on July 9th, 2010

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding

    Hydrodynamic instabilities in a highly radiative environment

    Get PDF
    In this paper, we present the effects of a radiative shock (RS) on the morphology of jet-like objects subjected to hydrodynamic instabilities. To this end, we used an experimental platform developed to create RSs on high energy laser facilities such as LULI2000 and GEKKO XII. Here, we employed modulated targets to initiate Richtmyer–Meshkov and Rayleigh–Taylor instability (RTI) growth in the presence of an RS. The RS is obtained by generating a strong shock in a dense pusher that expands into a low-density xenon gas. With our design, only a limited RTI growth occurs in the absence of radiative effects. A strongly radiative shock has opposite effects on RTI growth. While its deceleration enhances the instability growth, the produced radiations tend to stabilize the interfaces. Our indirect experimental observations suggest a lower instability growth despite the interface deceleration. In addition, the jets, produced during the experiment, are relevant to astrophysical structures such as Herbig–Haro objects or other radiatively cooling jets

    Spectrally-resolved UV photodesorption of CH4 in pure and layered ices

    Full text link
    Context. Methane is among the main components of the ice mantles of insterstellar dust grains, where it is at the start of a rich solid-phase chemical network. Quantification of the photon-induced desorption yield of these frozen molecules and understanding of the underlying processes is necessary to accurately model the observations and the chemical evolution of various regions of the interstellar medium. Aims. This study aims at experimentally determining absolute photodesorption yields for the CH4 molecule as a function of photon energy. The influence of the ice composition is also investigated. By studying the methane desorption from layered CH4:CO ice, indirect desorption processes triggered by the excitation of the CO molecules is monitored and quantified. Methods. Tunable monochromatic VUV light from the DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91 nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice samples. The release of species in the gas phase is monitored by quadrupole mass spectrometry and absolute photodesorption yields of intact CH4 are deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV (~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4, which confirms a desorption mechanism mediated by electronic transitions in the ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a pattern characteristic of CO absorption, indicating desorption induced by energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from the pure ice in various interstellar environments is around 2.0 x 10^-3 molecules per incident photon. Results on CO-induced indirect desorption of CH4 provide useful insights for the generalization of this process to other molecules co-existing with CO in ice mantles

    Muscle fiber conduction velocity is more affected after eccentric than concentric exercise

    No full text
    It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
    corecore