318 research outputs found

    Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    Get PDF
    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    Pathological and ecological host consequences of infection by an introduced fish parasite

    Get PDF
    The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ15N and δ13C) revealed trophic impacts associated with infection, particularly for δ15N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ15N and δ13C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s−1) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite

    Distributions of epistasis in microbes fit predictions from a fitness landscape model.

    Get PDF
    How do the fitness effects of several mutations combine? Despite its simplicity, this question is central to the understanding of multilocus evolution. Epistasis (the interaction between alleles at different loci), especially epistasis for fitness traits such as reproduction and survival, influences evolutionary predictions "almost whenever multilocus genetics matters". Yet very few models have sought to predict epistasis, and none has been empirically tested. Here we show that the distribution of epistasis can be predicted from the distribution of single mutation effects, based on a simple fitness landscape model. We show that this prediction closely matches the empirical measures of epistasis that have been obtained for Escherichia coli and the RNA virus vesicular stomatitis virus. Our results suggest that a simple fitness landscape model may be sufficient to quantitatively capture the complex nature of gene interactions. This model may offer a simple and widely applicable alternative to complex metabolic network models, in particular for making evolutionary predictions

    AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia

    Get PDF
    Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia

    An experimental investigation into the dimensional error of powder-binder three-dimensional printing

    Get PDF
    This paper is an experimental investigation into the dimensional error of the rapid prototyping additive process of powder-binder three-dimensional printing. Ten replicates of a purpose-designed part were produced using a three-dimensional printer, and measurements of the internal and external features of all surfaces were made using a general purpose coordinate measuring machine. The results reveal that the bases of all replicates (nominally flat) have a concave curvature, producing a flatness error of the primary datum. This is in contrast to findings regarding other three-dimensional printing processes, widely reported in the literature, where a convex curvature was observed. All external surfaces investigated in this study showed positive deviation from nominal values, especially in the z-axis. The z-axis error consisted of a consistent positive cumulative error and a different constant error in different replicates. By compensating for datum surface error, the average total height error of the test parts can be reduced by 25.52 %. All the dimensional errors are hypothesised to be explained by expansion and the subsequent distortion caused by layer interaction during and after the printing process

    Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival

    Get PDF
    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C.sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C.sardinella were confirmed. However, the inclusion of Siberian C.sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C.albula clades and were clearly distinct from those in North American C.sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized

    The cGMP-Dependent Protein Kinase II Is an Inhibitory Modulator of the Hyperpolarization-Activated HCN2 Channel

    Get PDF
    Opening of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated by direct binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus. Here, we show for the first time that in the HCN2 channel cGMP can also exert an inhibitory effect on gating via cGMP-dependent protein kinase II (cGKII)-mediated phosphorylation. Using coimmunoprecipitation and immunohistochemistry we demonstrate that cGKII and HCN2 interact and colocalize with each other upon heterologous expression as well as in native mouse brain. We identify the proximal C-terminus of HCN2 as binding region of cGKII and show that cGKII phosphorylates HCN2 at a specific serine residue (S641) in the C-terminal end of the CNBD. The cGKII shifts the voltage-dependence of HCN2 activation to 2–5 mV more negative voltages and, hence, counteracts the stimulatory effect of cGMP on gating. The inhibitory cGMP effect can be either abolished by mutation of the phosphorylation site in HCN2 or by impairing the catalytic domain of cGKII. By contrast, the inhibitory effect is preserved in a HCN2 mutant carrying a CNBD deficient for cGMP binding. Our data suggest that bidirectional regulation of HCN2 gating by cGMP contributes to cellular fine-tuning of HCN channel activity

    Contrasting Genetic Structure in Two Co-Distributed Species of Old World Fruit Bat

    Get PDF
    The fulvous fruit bat (Rousettus leschenaulti) and the greater short-nosed fruit bat (Cynopterus sphinx) are two abundant and widely co-distributed Old World fruit bats in Southeast and East Asia. The former species forms large colonies in caves while the latter roots in small groups in trees. To test whether these differences in social organization and roosting ecology are associated with contrasting patterns of gene flow, we used mtDNA and nuclear loci to characterize population genetic subdivision and phylogeographic histories in both species sampled from China, Vietnam and India. Our analyses from R. leschenaulti using both types of marker revealed little evidence of genetic structure across the study region. On the other hand, C. sphinx showed significant genetic mtDNA differentiation between the samples from India compared with China and Vietnam, as well as greater structuring of microsatellite genotypes within China. Demographic analyses indicated signatures of past rapid population expansion in both taxa, with more recent demographic growth in C. sphinx. Therefore, the relative genetic homogeneity in R. leschenaulti is unlikely to reflect past events. Instead we suggest that the absence of substructure in R. leschenaulti is a consequence of higher levels of gene flow among colonies, and that greater vagility in this species is an adaptation associated with cave roosting
    corecore