65 research outputs found

    Diabetes reduces bone marrow and circulating porcine endothelial progenitor cells, an effect ameliorated by atorvastatin and independent of cholesterol

    Get PDF
    Bone marrow derived endothelial progenitor cells (EPCs) are early precursors of mature endothelial cells which replenish aging and damaged endothelial cells. The authors studied a diabetic swine model to determine if induction of DM adversely affects either bone marrow or circulating EPCs and whether a HMG-CoA reductase inhibitor (statin) improves development and recruitment of EPCs in the absence of cholesterol lowering. Streptozotocin was administered to Yorkshire pigs to induce DM. One month after induction, diabetic pigs were treated with atorvastatin (statin, n = 10), ezetimibe (n = 10) or untreated (n = 10) and evaluated for number of bone marrow and circulating EPCs and femoral artery endothelial function. There was no effect of either medication on cholesterol level. One month after induction of DM prior to administration of drugs, the number of bone marrow and circulating EPCs significantly decreased (P < 0.0001) compared to baseline. Three months after DM induction, the mean proportion of circulating EPCs significantly increased in the atorvastatin group, but not in the control or ezetimibe groups. The control group showed progressive reduction in percentage of flow mediated vasodilatation (no dilatation at 3 months) whereas the atorvastatin group and ezetimibe exhibited vasodilatation, 6% and 4% respectively. DM results in significant impairment of bone marrow and circulating EPCs as well as endothelial function. The effect is ameliorated, in part, by atorvastatin independent of its cholesterol lowering effect. These data suggest a model wherein accelerated atherosclerosis seen with DM may, in part, result from reduction in EPCs which may be ameliorated by treatment with a statin

    A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    Get PDF
    Apoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the criticalroles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis invivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery. Palchaudhuri etal. describe the discovery of a small molecule called "Raptinal" that induces unusually rapid apoptotic cell death via the intrinsic pathway. Their work describes the utility of Raptinal as a tool for apoptosis induction relative to other available small molecules

    Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy

    Get PDF
    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies

    Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review.

    Get PDF
    Colorectal cancer is a leading cause of cancer related mortality in the Western world. In recent years, combination 5-fluorouracil based adjuvant chemotherapy as first line treatment of this disease has led to improved disease free and overall survival. However drug resistance, both innate and acquired, remains an obstacle in the effective treatment of this disease. Apoptotic pathways are frequently altered in both tumor progression and drug resistance; therefore proteins associated with this pathway may have potential as prognostic biomarkers for this disease. Identification of clinical biomarkers that are able to identify patients who are more likely to respond to specific chemotherapy will lead to more personalized, effective, and less toxic therapy. This review focuses on the current status of apoptosis related proteins as biomarkers for colorectal cancer and discusses the possible application of systems approaches in this context

    ARC - Augmented renal clearance

    No full text
    In-hospital and intensive care unit mortality rates for sepsis remain un-acceptably high, and have prompted the publication of international guidelines on best practice. Crucial to this is the application of early appropriate antibacterial therapy, in the correct dose. However, antibacterial regimes in this setting have largely been extrapolated from those in healthy volunteers, and fail to consider the unique pathophysiology and treatment provided to this population. As such, augmented renal clearance (ARC) - the enhanced renal elimination of circulating solute - is likely to be one of the more common physiological changes encountered in this setting, although to date remains largely under-appreciated. Significantly this may alter the pharmacokinetics of many routinely prescribed agents in this setting, pre-disposing to sub-therapeutic levels or treatment failure. This review paper examines this phenomenon in detail, providing a summary of the likely underlying mechanisms, those patients at greatest risk, and the implications for antibacterial dosing in the critically ill

    A Randomized Controlled Trial on Optimal Sampling Sequence in Radial Guide Sheath Endobronchial Ultrasound Lung Biopsy

    No full text
    Background: An optimal sampling sequence in radial guide sheath endobronchial ultrasound lung biopsy (R-EBUS) is unclear. This prospective single-center pilot randomized controlled trial aimed to determine if the initial method and sequence of sampling affect the diagnostic accuracy of the procedure. Methods: Consecutive patients undergoing R-EBUS for lesions >15 mm with a bronchus sign were randomly assigned (1:1:1) to biopsy first (group A), brushings first (group B) or combination (group C). The primary outcome was a positive diagnosis from any sampling method. Results: Fifty-four patients were randomized. The overall diagnostic yield of the procedure was 77.8% (95% confidence interval: 66%-89%), with no difference between groups. A higher rate of positive cytology from brushings was seen if the biopsies were performed before brushings (77.8% in group A vs. 44.4% in group B, P=0.03). The rate of positive cytology from washings was higher if the washings were obtained just after the brushings (61.1% in group A vs. 11.1% in group B, P=0.02). There was no difference in the rate of positive biopsy histology in the groups (P=0.27). All 3 sampling modalities were more likely to be positive in group A (50.0% vs. 11.1% in group B and 22.2% in group C, P=0.04). Complications rate was low and not significantly different between groups. Conclusion: The overall rate of a positive R-EBUS procedure was not affected by the initial sampling method or sequence. However, all 3 sampling modalities were more likely to be positive if biopsies were performed first, followed by brushings and washings
    • …
    corecore