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Abstract

Bone marrow derived endothelial progenitor cells (EPCs) are early precursors of mature 

endothelial cells which replenish aging and damaged endothelial cells. The authors studied a 

diabetic swine model to determine if induction of DM adversely affects either bone marrow or 

circulating EPCs and whether a HMG-CoA reductase inhibitor (statin) improves development and 

recruitment of EPCs in the absence of cholesterol lowering. Streptozotocin was administered to 

Yorkshire pigs to induce DM. One month after induction, diabetic pigs were treated with 

atorvastatin (statin, n = 10), ezetimibe (n = 10) or untreated (n = 10) and evaluated for number of 

bone marrow and circulating EPCs and femoral artery endothelial function. There was no effect of 

either medication on cholesterol level. One month after induction of DM prior to administration of 

drugs, the number of bone marrow and circulating EPCs significantly decreased (P < 0.0001) 

compared to baseline. Three months after DM induction, the mean proportion of circulating EPCs 

significantly increased in the atorvastatin group, but not in the control or ezetimibe groups. The 

control group showed progressive reduction in percentage of flow mediated vasodilatation (no 

dilatation at 3 months) whereas the atorvastatin group and ezetimibe exhibited vasodilatation, 6% 

and 4% respectively. DM results in significant impairment of bone marrow and circulating EPCs 

as well as endothelial function. The effect is ameliorated, in part, by atorvastatin independent of its 

cholesterol lowering effect. These data suggest a model wherein accelerated atherosclerosis seen 

with DM may, in part, result from reduction in EPCs which may be ameliorated by treatment with 

a statin.
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Endothelial dysfunction heralds the development of atherosclerosis and clinical events (1). 

Patients with diabetes mellitus (DM) have marked endothelial dysfunction, accelerated 

atherosclerosis and an increased risk of cardiovascular events (2). Endothelial progenitor 

cells (EPCs) are precursors of mature endothelial cells originating from the bone marrow 

that presumably replenish aging and damaged endothelial cells that line blood vessels (3,4). 

EPCs are thought to home to sites of ischemia and participate in neovascularization and 

collateral development (5–7). The number of circulating EPCs and their migratory activity is 

reduced in patients with risk factors for ischemic cardiovascular disease and negatively 

correlated with the Framingham cardiovascular risk factor score (8). Limb ischemia and 

coronary artery bypass grafting induce a rapid, transient mobilization of EPCs from the bone 

marrow.

Recent studies suggest that statins may enhance EPC differentiation and migration to sites of 

vascular injury (9,10). Two independent laboratories published data indicating that statin 

treatment increases the circulating pool of EPCs by mobilizing them from bone marrow and 

also inhibiting EPC apoptosis (11,12). It is unknown if statins directly affect bone marrow 

and circulating EPCs in the setting of cardiac risk factors, such as DM, and whether this 

effect is independent from an effect on cholesterol level.

The diabetic state is associated with decreased number of circulating EPCs (13). Also, the 

EPCs of patients with DM are characterized by decreased proliferation capacity and 

reduction of their adhesiveness and ability to form capillary tubes in vitro (14). One study of 

diabetic mice found that at sacrifice the number of bone marrow and circulating EPCs was 

reduced, but the temporal relationship was not evaluated in this small animal model (15). 

There are no published studies evaluating simultaneously the bone marrow and circulating 

EPC number in response to the diabetic state over time and/or the response of EPCs to statin 

treatment.

We previously identified a population of progenitor cells in the porcine bone marrow, called 

side population cells (SP), which differentiate into endothelial cells (16). Other studies have 

shown that SP cells are not only present in bone marrow, but they are also observed in the 

arterial wall where they participate in angiogenesis (17).

In this study, we tested the hypothesis that the diabetic state will reduce EPCs in the bone 

marrow as well as mobilization of EPCs. Also, we hypothesized that statins promote EPC 

mobilization from the bone marrow and increase circulating EPCs in the blood in the 

diabetic state. Although statins have been shown to mobilize EPCs and improve endothelial 

function (18). It is unknown if other classes of lipid lowering agents such as ezetimibe have 

similar effects. Accordingly, we conducted a study in a porcine model of DM evaluating the 

effects of atorvastatin and ezetimibe on bone marrow and circulating EPC number and 

endothelial function to determine if statins and/or ezetimibe promote mobilization of EPCs 

and/or improve endothelial function in the setting of DM.
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Methods

Study Design

A total of 30 pigs were studied at baseline and 1 month after induction of DM for bone 

marrow and circulating EPCs, endothelial function and a marker of inflammation, 

lipoprotein phospholipase A2 (Lp-PLA2). This study was performed following approval of 

the Institutional Animal Care and Use Committee of the University of Pennsylvania. One 

month after induction of DM, pigs were randomly assigned to receive atorvastatin 10 mg per 

day or ezetimibe 10 mg per day or were untreated for a total of 3 months. The 

aforementioned outcome measures were then repeated at study completion which occurred 

at 4 months after induction of DM.

Pig Model

Type I DM was induced in 30 Yorkshire pigs (28–30 kg) by infusing a single dose of 

streptozotocin (Sicor Pharmaceuticals, Irvine, CA, 125 mg/kg) IV over a period of 30 min 

by a Harvard pump as described in our previous publication (19). All of the pigs, including 

the controls, were made diabetic using the same protocol. Animals were recovered from 

anesthesia and returned to cages, followed by feeding that included dextrose powder to 

avoid hypoglycemic shock due to the excessive blood insulin levels after the lysis of the beta 

cells. The first blood glucose levels were measured 4 h after induction, followed by daily 

measurements, using a glucometer (Beyer, Tarrytown, NY) every day before feeding for the 

first 7 days and then on a weekly basis thereafter.

Bone Marrow Harvest

A sternal bone marrow aspirate (5 ml) was collected at baseline, prior to induction of 

diabetes, and at 1 month, 4 months after the induction of diabetes in order to assess bone 

marrow populations of EPCs. The bone marrow aspirate was collected under standard sterile 

technique while the animal was sedated as per prior published methods (16).

Side Population Cells

Porcine endothelial progenitors were identified using a modification of the procedure 

described by Goodell et al. (20,21). A functional assay using Hoechst 33342 was used to 

identify these progenitors (Fig. 1). In several species, it has been noted that stem cells efflux 

this dye resulting in a low staining population termed the side population (SP) (22,23). 

Briefly, red blood cells in porcine bone marrow or peripheral blood were removed using 1× 

ammonium chloride solution and a single-cell suspension was achieved. Cells were 

aliquoted (2 × 106 cells per tube) and incubated for 2 h at 37°C with Hoechst 33342 (Sigma-

Aldrich) at a concentration of 5 μg/ml. with or without 50 μM verapamil (Sigma-Aldrich). 

Following two washes with ice cold HBSS + serum, surface staining for CD45 was 

performed using an indirect method (mouse antiporcine CD45/FITC goat anti-mouse Ig) to 

identify hematopoietic progenitors. Just prior to analysis, propidium iodide (Molecular 

Probes, 2 μg/ml) was added as a viability marker. All analyses were performed on a BD 

LSRII digital high speed analytical flow cytometer (BD Biosciences). After UV excitation at 

355 nm, Hoechst blue (collected through a 405/30 filter) and red (670/40 filter) signals were 
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analyzed to detect the SP. One hundred thousand live cells were collected per file and EPCs 

were defined as propidium iodide negative, singlets (based on light scatter), dim CD45 and 

positive for SP. Data were analyzed using FlowJo (TreeStar, Inc.) software.

Endothelial Function

In vivo endothelial function was determined at baseline, as well as 1 month and 4 months 

after DM induction. The 1-month measurement was done prior to randomization. Flow-

mediated dilatation (FMD), the measurement of endothelial function, was evaluated by 

quantifying changes in femoral artery diameter following a 5-min femoral arterial occlusion 

with a mechanical clamp. The femoral artery was imaged in the longitudinal plane using an 

ultrasound system equipped with vascular software for two-dimensional imaging, color and 

power Doppler, an internal ECG, and a linear array transducer with a minimum frequency of 

7 MHz. Shear stress-induced vasodilatation was measured utilizing longitudinal images 

acquired 1 min after release of occlusive pressure. Analysis of luminal diameter was 

measured using digital still images captured during end-diastole using specialized imaging 

software (Medical Imaging Applications, Brachial Analyzer Iowa City, Iowa). The lumen 

intima was identified automatically by edge detection software, with manual adjustments 

performed when necessary. Arterial diameters (mm) were calculated as the mean distance 

between the anterior and posterior wall at the vessel–blood interface. Flow-mediated 

vasodilatation was expressed as the ratio of diameter change to baseline diameter.

Measurement of Lp-PLA2 Mass and Activity

Measurement of Lp-PLA2 mass was done with the diaDexus “PLAC” immunoassay using 

two specific monoclonal antibodies described by Caslake et al. (24). The assay system 

utilizes monoclonal anti-Lp-PLA2 antibody (2C10) directed against Lp-PLA2 for solid phase 

immobilization on the microwell strips. Plasma samples were added to the plate and 

incubated for 10 min at 20–26°C. A second monoclonal anti-Lp-PLA2 antibody (4B4) 

labeled with the enzyme horseradish peroxidase (HRP) was then added and reacted with the 

immobilized antigen at 20–26°C for 180 min, resulting in the Lp-PLA2 molecules being 

captured between the solid phase and the enzyme-labeled antibodies. The wells are washed 

with a supplied buffer to remove any unbound antigen. The substrate, tetramethylbenzidine 

(TMB), is then added and incubated at 20–26°C for 20 min, resulting in the development of 

a blue color. Color development is stopped with the addition of Stop Solution, changing the 

color to yellow. The absorbance of the enzymatic turnover of the substrate is determined 

spectrophotometrically at 450 nm and is directly proportional to the concentration of Lp-

PLA2 present. A set of Lp-PLA2 Calibrators is used to plot a standard curve of absorbance 

versus Lp-PLA2 concentration from which the Lp-PLA2 concentration in the test sample can 

be determined.

The plasma Lp-PLA2 activity was measured with a colorimetric activity method (CAM) 

provided by diaDexus, Inc. (South San Francisco, CA, USA). Samples, standards, or 

controls are added to wells of a non-binding 96-well microplate, followed by addition of 

CAM reaction buffer containing substrate. In the presence of Lp-PLA2 enzyme, the 

substrate is converted upon hydrolysis by the phospholipase enzyme. The change in 

absorbance is immediately measured at 405 nm over 60–180 s. The level of Lp-PLA2 
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activity in nmol/min/mL is calculated from the slope (OD405/min), based on a standard 

conversion factor from a p-nitrophenol calibration curve.

Statistical Analysis

For each treatment group, changes in glucose, cholesterol and weight over time were 

analyzed using paired t-tests. The FMD data were analyzed using a mixed effects model 

where correlations between repeated measurements were considered on the same animals 

across time (25). Terms in the model included age of animal, treatment group (control, 

atorvastatin, ezetimibe), side (left versus right artery) and time of measurement (1 min or 2 

min) after initiation of hyperemia. Differences in the effect of treatment over time were 

examined using an interaction between treatment group and age of animal using a global F-

test to test for differences in the effects of animal age among the different treatment groups, 

followed by Wald tests to examine specific changes (e.g., baseline versus 1 month).

For EPC experiments, linear regressions were constructed using the individual paired data 

time points (baseline versus 1 month and 1 versus 4 months. For the analysis of 1 month 

versus 4 months, the baseline percentage of EPCs was added to the model in an analysis of 

covariance to account for variability among animals. Linear regression analysis was used to 

examine the association between the mean FMD change and EPC change between baseline 

and 1 month. For this analysis, mean FMD was determined across both sides and times of 

measurement for each animal.

For analysis of Lp-PLA2, differences between time points were examined using paired 

Wilcoxon signed-rank tests using only those animals with measurements at both time points 

of interest. To ensure maximum power to detect effects, all of the treatment groups were 

pooled for the comparison of animals from baseline to 1 month. For the comparison of 

animals from 1 month to post-treatment, treatment groups were analyzed separately (26).

Data were analyzed using R 2.6; a Type I error of 0.05 was used to declare significance for 

hypothesis tests and any P value (P) less than 0.10 was reported. All hypothesis tests were 

two-sided except those for the comparison of EPC at baseline versus 1 month, and for 4 

months versus 1 month. Here a priori hypotheses indicated that we should test only for a 

decrease in EPCs between baseline and 1 month and an increase between 1 month and 4 

months. No corrections for multiple comparisons were performed.

The statistical methods were chosen with the goal of balancing the competing need to 

maximize power and protect against false positives/invalid type I error rates in our 

hypothesis tests. The experiment was initially designed to look at within animal differences, 

and with the available sample sizes we anticipated that we would have insufficient statistical 

power to make meaningful comparisons between groups. Thus rather than carry out an 

ANOVA-type analysis comparing time, treatment and treatment by time effects, we focused 

our analyses on a limited number of within-subject analyses, specifically comparing the 

combined baseline versus 1 month and treatment-specific 1 month versus 4 month time 

points. This analysis suggested that EPCs significantly increased in the atorvastatin group, 

but the P value did not initially achieve strict statistical significance. We adjusted 

statistically for baseline variability in EPCs in the analysis using an analysis of covariance. 
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Our study may have been limited somewhat by statistical power; however, the findings are 

unique and we have reported both P values and estimates of the effect, with the hope of 

stimulating further research and hypotheses in this area.

Results

Laboratory Data

The animal weight and laboratory data is listed in Table 1. There were three noteworthy 

changes over time in these data. The mean glucose level was significantly elevated above 

baseline in all three groups 1 month after induction of diabetes (P < 0.0001). When analyzed 

separately by group, changes in cholesterol levels declined from baseline to 1 month but not 

significantly. Since the animals were not yet randomized to treatment at 1 month, we also 

used a more powerful analysis, comparing cholesterol levels at 1 month versus baseline in a 

pooled comparison of all animals. Here the reduction in cholesterol was statistically 

significant (P = 0.005). Lastly, the animals from all three groups gained weight in the final 4 

weeks of the study compared to week 1 of the study (P < 0.05 for each group).

Bone Marrow and Circulating EPCs

The number of bone marrow EPCs was measured at baseline, 1 month and 4 months after 

induction of DM, based on identification of SP (Fig. 1). One month following the induction 

of DM, the mean levels of both bone marrow-derived and circulating EPCs were 44.7% (P = 

0.001) and 26.9% (P < 0.0001) respectively below baseline (Fig. 2). In the atorvastatin 

group at 4 months, the mean levels of bone marrow-derived and circulating EPC's increased 

181% (P = 0.065) and 203% (P = 0.080) above the level observed at 1 month. While 

statistical significance was not achieved for this direct comparison, the result for circulating 

cells (P = 0.043), but not marrow-derived cells (P = 0.065) achieved significance after 

adjusting for variation in baseline levels of EPCs. In the ezetimibe group at 4 months, the 

mean levels of bone marrow-derived and circulating EPC's were 76% and 94%, 

respectively, of the levels observed at 1 month (P > 0.05, NS). In the control group at 4 

months, the mean levels of bone marrow-derived and circulating EPC's were 63% and 68%, 

respectively, of the levels observed at 1 month (P > 0.05, NS). Taken together, these data 

demonstrate that treatment of diabetic pigs with atorvastatin, but not ezetimibe, significantly 

increased circulating EPCs.

Endothelial Function

Next, we examined the effect of treatment on endothelial function. Prior to induction of DM, 

femoral arteries demonstrated a flow-mediated vasodilatory response of 11.7%; comparable 

in magnitude to that reported in humans (8). The mean FMD did not differ significantly 

among the right or left femoral artery or at 1 min or 2 min post-hyperemia. One month after 

induction, the mean FMD decreased significantly (P < 0.0001, Fig. 3) demonstrating the 

effect of diabetes. There was also strong evidence of differences in FMD over time that 

varied among the control and treated groups (P < 0.0001, Fig. 3). At 4 months, the mean 

FMD was lower than the 1-month (P = 0.027) for control group, however, in contrast, the 

atorvastatin group mean FMD was significantly higher (P = 0.003, Table 2). In the 

ezetimibe treatment group at 4 months, the FMD was significantly lower than baseline (P = 
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0.007, results not shown) and also significantly lower than 1 month (P < 0.0001, Fig. 3). 

However, the mean FMD for the ezetimibe group was higher than the control group at 4 

months (P = 0.004, Table 2).

When the number of EPCs were compared to the change in FMD between baseline and 4 

weeks, animals with higher circulating EPCs at baseline had less reduction in FMD (P = 

0.027, Fig. 4). However the difference between FMD at 4 weeks and baseline was 

significantly positively associated with baseline EPCs. Thus, animals with higher baseline 

EPC's experienced less of a decrease in FMD, and in some cases actually increased FMD at 

4 weeks versus baseline (Fig. 4). No significant trends were observed between FMD 

changes and EPC levels in the marrow or when the 1-month and 4-month time points were 

compared.

Lp-PLA2

In order to characterize the state of oxidative stress Lp-PLA2, a marker of inflammation 

(27), was measured at various time points (Table 3). In association with induction of 

diabetes Lp-PLA2 activity was significantly higher compared to baseline for the three 

groups combined (P = 0.003). A strong trend in reduction of Lp-PLA2 activity was observed 

in both the atorvastatin (P = 0.055) and ezetimibe (P = 0.063) treatment groups at 4 months 

compared to baseline. The Lp-PLA2 mass was also evaluated at pre-determined time points. 

There was a trend in elevation of mass at 1 month when all groups were pooled. There was 

no significant change in Lp-PLA2 mass at the 1 month or 4 month time points compared to 

control (Table 4).

Discussion

Evaluation of endothelial progenitor numbers and function are important in many pathologic 

conditions. As with many studies of progenitors, flow cytometry offers a useful approach to 

detect these rare cells. This is the first prospective study, using a large animal model, 

showing that DM reduces both the concentration of bone marrow as well as circulating 

EPCs. Flow cytometric measurement of EPCs, using the SP approach revealed that in 

diabetic animals, administration of atorvastatin enhanced EPC mobilization to the 

circulation. Interestingly, ezetimibe did not induce a significant increase in bone marrow or 

circulating EPCs strongly suggesting that the mobilization of EPCs following treatment with 

atorvastatin is not wholly related to its cholesterol lowering effects. This effect was observed 

in pigs and may not be seen with other animals or humans.

One major difficulty in studying the effect of endothelial progenitors is that the definition in 

both humans and animals is controversial. Unfortunately the cell surface markers available 

in pigs are significantly limited compared to humans and mice. For example, there is no 

available CD34 pig surface maker for flow cytometry. Therefore, we chose to evaluate a 

progenitor population of cells in the bone marrow that has been well defined SP cells. This 

cell population was reported by Goodell et al. almost a decade ago (20,22,23). In a previous 

publication we have reported that SP cells differentiate into endothelial cells (16). In 

humans, by flow cytometry endothelial progenitors lie in the CD45 dim to negative 

population (as compared to the CD45 bright for hematopoietic progenitors) so we chose to 
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further limit our study to this population. As such, the SP population provides for study of 

EPC phenotype cells (and potentially other progenitor cells) that may be affected by diabetes 

and play a role in the phenotypic manifestations of diabetes.

As anticipated, the induction of DM was accompanied by endothelial dysfunction and 

evidence of inflammation as measured by Lp-PLA2. Treatment with either atorvastatin or 

ezetimibe improved endothelial dysfunction over time and attenuated the increase in 

inflammation. These data suggest that the potential benefits of statins and ezetimibe in the 

setting of diabetes are not solely dependent upon mobilization of EPCs from the bone 

marrow.

The clinical data examining the mechanism(s) of action of ezetimibe compared with statin 

drugs are poorly defined at present. One study of 20 patients with chronic heart failure 

showed FMD improved after simvastatin, but not ezetimibe (18). Another study that 

included 20 patients with rheumatoid arthritis revealed that both of these classes of drugs 

improved FMD (28). The results from our study indicate that in this large animal model of 

DM, statin treatment as well as ezetimibe improved endothelial function in the setting of 

normal cholesterol levels. However, the absolute value for atorvastatin group was higher at 4 

months compared to ezetimibe group.

Diabetic vasculopathy is characterized by early endothelial dysfunction and a subsequent 

marked increased risk of morbidity and mortality (2,29). A prospective study of patients 

with type II DM revealed that statin administration is efficacious in reducing the risk of first 

cardiovascular disease events, including stroke (30). Previous studies indicate that patients 

with DM have reduced levels of circulating EPCs (31,32) as well as abnormal function (33). 

Rivard et al. evaluated the effect of diabetes on angiogenesis and found that diabetes impairs 

endogenous neovascularization of ischemic tissues resulting from reduced expression of 

vascular endothelial growth factor (VEGF) (34). Prior to the current study a cause-effect 

relationship between EPCs and a biologic response, or therapeutic effect, on endothelial 

function was not discerned. Our results indicate that reduced circulating EPCs in the diabetic 

state are due to decreased bone marrow production of cells as well as decreased EPCs in the 

peripheral circulation. The potential mechanisms for increased circulating EPCs in response 

to atorvastatin are increased mobilization from marrow, increased survival (known effect in 

vitro), and reduced homing due to reduced endothelial damage. As such, the results indicate 

that the systemic effects of DM extend to the bone marrow microenvironment resulting in 

endothelial dysfunction. Furthermore, the role of DM in causing vasculopathy may be 

caused, at least in part, by endothelial injury coupled with a reduced endothelial response 

mechanism(s).

Statin drugs are reported to have pleiotropic effects beyond cholesterol lowering (35,36). 

The treatment of dyslipidemia with a statin increases the circulating pool of EPCs and 

inhibits EPC apoptosis in vitro (11,12). Clinically stable angina pectoris patients treated for 

4 weeks with atorvastatin demonstrated an increase in the number of circulating EPCs and 

increased migratory capacity ex vivo (37). However, these studies were in the setting of 

elevated cholesterol and it was not clear if the reduction in low density lipoprotein (LDL) or 

a non-cholesterol related effect was responsible for the beneficial effect on EPC 
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mobilization. The present results indicate that DM reduces both bone marrow reserves and 

circulating EPCs with accompanying endothelial dysfunction, and this effect is partially 

reversed by statin administration in the setting of normal cholesterol.

A consequence of DM is increased oxidative stress and inflammation (2). A previous 

investigation showed that DM increases oxidative stress and inflammation in coronary 

arteries of normocholesterolemic pigs (38) and the elevated Lp-PLA2 activity noted in this 

study confirms this finding. The EPC is thought to reside in the marrow and release into the 

circulation due to increased nitric oxide (NO) levels (39). The high oxidative state of DM 

likely results in uncoupling endothelial derived nitric oxide synthase (eNOS) and 

development of reactive oxygen species that impair NO availability that is important for 

EPC mobilization (4). It is likely that the reduction of circulating EPCs secondary to DM 

and the impaired endothelial dependent vasodilatation observed in this study are related to 

reduced NO availability. Statin administration has been shown to enhance EPC 

differentiation via PI 3-kinase/akt pathway (12) and this may be one pleiotropic effect that 

improves the bone marrow EPC niche and ultimately reduction in cardiovascular events in 

the diabetic population. Furthermore, HMG-CoA reductase inhibition normalizes 

endothelial function and reduces oxidative stress in the diabetic state by inhibiting activation 

of NADPH oxidase and by preventing eNOS uncoupling (40).

In conclusion, DM results in reduced levels of both bone marrow and circulating EPCs and 

was accompanied by impaired endothelial function. These detrimental effects are partially 

ameliorated by statin administration and as such demonstrate beneficial cholesterol-

independent effects of statins on EPCs and endothelial function in the setting of DM. The 

pathological mechanism(s) resulting in reduced bone marrow EPCs deserves further 

investigation.
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Figure 1. 
Detection of SP cells in porcine bone marrow. Porcine bone marrow cells were stained with 

5 μM of Hoechst 33342 for 120 min at 37°C with or without 50 μM verapamil. SP cells 

analysis was performed on BD Bioscience LSRΠ with UV laser. Gating was based on live 

(negative for PI), singlet (based on light scatter) and CD45 negative cells (A). Side 

population cells (EPCs) were clearly detected after Hoechst 33342 staining, and gated side 

population cells (EPCs) account for 0.51% of the CD45 negative cells (B). In the presence 

of verapamil, gated side population cells almost completely disappeared (C).

Mohler et al. Page 13

Cytometry A. Author manuscript; available in PMC 2014 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Mean EPC levels across time in blood and marrow. Vertical lines indicate standard errors 

for the combined groups at baseline and 1 month, and for control: rectangles, atorvastatin 

closed circles, ezetimibe open circles at 4 months.
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Figure 3. 
Mean percent flow mediated vasodilatation (FMD) time points during the study. Vertical 

lines indicate standard errors. Control: Rectangles, Atorvastatin closed circles, Ezetimibe 

open circles.
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Figure 4. 
Association between baseline EPC and FMD at baseline, 4 weeks or the difference in FMD 

between 4 weeks and baseline.
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Table 1

Mean (SEM) glucose, cholesterol and weight over timea

DM ONLY DM + ATORVASTATIN DM + EZETIMIBE

Glucose (mg/dL)

 0 month 100.0 (7.2) 115.9 (5.5) 81.6 (11.4)

 1 months 323.9 (21.3) 319.3 (24.8) 359.8 (21.8)

 4 months 307.3 (54.0) 339.4 (25.3) 306.6 (59.0)

P value

 0 vs. 1 month <0.0001 <0.0001 <0.0001

P value

 1 vs. 4 month NS NS NS

Cholesterol (mg/dL)

 0 month 110.7 (11.5) 85.9 (5.2) 89.3 (4.7)

 1 months 74.6 (6.7) 72.4 (3.9) 66.5 (5.4)

 4 months 86.4 (3.2) 78.6 (4.6) 60.5 (4.7)

P value

 0 vs. 1 month NS NS 0.06

P value

 1 vs. 4 month NS NS NS

Weight (kg)

 0 month 35.2 (2.3) 34.3 (3.3) 34.2 (3.7)

 1 months 36.1 (3.2) 33.0 (3.5) 31.9 (2.8)

 4 months 56.1 (7.6) 49.1 (3.6) 42.7 (4.8)

P value

 0 vs. 1 month NS NS NS

P value

 1 vs. 4 months 0.004 0.001 0.017

a
NS indicates a P value greater than 0.10.
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Table 2
Mean (SEM) for percent FMD for atorvastatin and ezetimibe groups compared to control 

at same time pointa

AGE ATORVASTATIN EZETIMIBE

Baseline 12.96 (1.99) 9.64 (2.47)

1 month 4.45 (2.11) 12.44 (2.47)*

4 months 6.98 (2.23)* 3.96 (2.55)*

a
Asterisks (*) indicate P < 0.05. Data are compared to control at same time point.
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Table 3
Lp-PLA2 activity (nmol/min/mL) for animals with paired measurements at each set of 

time pointsa

BASELINE 1 MONTH 4 MONTHS P VALUE

Control 112.7 (104, 121) 126.9 (123, 149) 131.6 (94, 169) 0.689

Atorvastatin 117.2 (109, 120) 157.5 (143, 167) 137.5 (128, 150) 0.055

Ezetimibe 112.2 (109, 128) 149.9 (134, 154) 93.5 (73, 138) 0.063

a
Entries show median (inter-quartile range). P = 0.0003 for 1 month compared to baseline when pooled among all groups.
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Table 4

Lp-PLA2 mass (mcg/L) for animals with paired measurements at each set of time pointsa

BASELINE 1 MONTH 4 MONTHS P VALUE

Control 1.1 (0.9, 1.3) 1.7 (1.3, 2.3) 1.4 (1.1, 2.1) 0.25

Atorvastatin 1.3 (0.8, 1.5) 1.2 (1.1, 1.3) 1.0 (1.0, 2.1) 1.00

Ezetimibe 1.0 (1.0, 2.0) 1.6 (1.0, 2.1) 2.1 (1.7, 2.5) 1.00

a
Entries show median (inter-quartile range). P = 0.079 for 1 month compared to baseline when pooled among all groups.
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