52 research outputs found

    Taxonomical and distributional notes on Polylepis (Rosaceae)

    Get PDF
    AbstractPolylepis pacensis M. Kessler & Schmidt-Leb. spec. nov. is described; P. flavipila (Bitter) M. Kessler & Schmidt-Leb., P. incarum (Bitter) M. Kessler & Schmidt-Leb., P. lanata (Kuntze) M. Kessler & Schmidt-Leb., and P. subtusalbida (Bitter) M. Kessler & Schmidt-Leb. are elevated from subspecies or varietal to species rank; P. triacontandra Bitter is reinstated as a species. The accompanying Electronic Supplement provides an updated key to species in Polylepis, and reports extensions to the known distribution ranges of three additional species of the genus.See also Electronic Supplement at: http://www.senckenberg.de/odes/06-01.ht

    Editorial for special issue "Unleashing the Hidden Potential of Anaerobic Fungi"

    Get PDF
    Anaerobic fungi (AF) of the phylum Neocallimastigomycota are a very peculiar group of microorganisms. Since their first discovery in the early nineteen-hundreds and assignment to the kingdom Fungi in 1975 by Orpin [1], many researchers have delved into these highly potent degraders of lignocellulosic biomass (LCB). Their panoply of hydrolytic enzymes makes them key players in the digestive tract of herbivores, but their occurrence may not be restricted to this habitat alone. Despite the plenitude of research on this AF group, many questions still remain unanswered, and the implementation of AF within, e.g., biomethanation of LCB or bioethanol production, is still in its infancy. This is where international projects such as “Unleashing the Hidden Potential of Anaerobic Fungi” (https://www.hipoaf.com; accessed last on 14 February 2023) hook in and aim at answering basic questions such as ideal growth conditions, improved and novel detection techniques, screening for novel habitats, strains and enzymes, symbiotic interactions of AF, and, eventually, at paving the way to the successful biotechnological implementation of these unique microorganisms. These questions are also the scope of this Special Issue, comprising eight original articles and two reviews that are dedicated to recent updates on various fields of AF research. The contributions span from AF in animal husbandry and biotechnology over AF systematics, physiology and molecular detection to isolation strategies

    Aestipascuomyces dupliciliberans gen. nov, sp. nov., the First Cultured Representative of the Uncultured SK4 Clade from Aoudad Sheep and Alpaca

    Get PDF
    We report on the isolation of the previously-uncultured Neocallimastigomycota SK4 lineage, by two independent research groups, from a wild aoudad sheep rumen sample (Texas, USA) and an alpaca fecal sample (Baden-WĂŒrttemberg, Germany). Isolates from both locations showed near-identical morphological and microscopic features, forming medium-sized (2–5 mm) white filamentous colonies with a white center of sporangia, on agar roll tubes and a heavy biofilm in liquid media. Microscopic analysis revealed monocentric thalli, and spherical polyflagellated zoospores with 7–20 flagella. Zoospore release occurred through an apical pore as well as by sporangial wall rupturing, a duality that is unique amongst described anaerobic gut fungal strains. Isolates were capable of growing on a wide range of mono-, oligo-, and polysaccharide substrates as the sole carbon source. Phylogenetic assessment based on the D1–D2 28S large rRNA gene subunit (D1–D2 LSU) and internal transcribed spacer-1 (ITS-1) regions demonstrated high sequence identity (minimum identity of 99.07% and 96.96%, respectively) between all isolates; but low sequence identity (92.4% and 86.7%, respectively) to their closest cultured relatives. D1–D2 LSU phylogenetic trees grouped the isolates as a new monophyletic clade within the Orpinomyces–Neocallimastix–Pecoramyces–Feramyces–Ghazallamyces supragenus group. D1–D2 LSU and ITS-1 sequences recovered from the obtained isolates were either identical or displayed extremely high sequence similarity to sequences recovered from the same aoudad sheep sample on which isolation was conducted, as well as several sequences recovered from domestic sheep and few other herbivores. Interestingly, members of the SK4 clade seem to be encountered preferably in animals grazing on summer pasture. We hence propose accommodating these novel isolates in a new genus, Aestipascuomyces (derived from the Latin word for “summer pasture”), and a new species, A. dupliciliberans. The type strain is Aestipascuomycesdupliciliberans strain R4

    Simultaneous Metabarcoding and Quantification of Neocallimastigomycetes from Environmental Samples:Insights into Community Composition and Novel Lineages

    Get PDF
    Anaerobic fungi from the herbivore digestive tract (Neocallimastigomycetes) are primary lignocellulose modifiers and hold promise for biotechnological applications. Their molecular detection is currently difficult due to the non-specificity of published primer pairs, which impairs evolutionary and ecological research with environmental samples. We developed and validated a Neocallimastigomycetes-specific PCR primer pair targeting the D2 region of the ribosomal large subunit suitable for screening, quantifying, and sequencing. We evaluated this primer pair in silico on sequences from all known genera, in vitro with pure cultures covering 16 of the 20 known genera, and on environmental samples with highly diverse microbiomes. The amplified region allowed phylogenetic differentiation of all known genera and most species. The amplicon is about 350 bp long, suitable for short-read high-throughput sequencing as well as qPCR assays. Sequencing of herbivore fecal samples verified the specificity of the primer pair and recovered highly diverse and so far unknown anaerobic gut fungal taxa. As the chosen barcoding region can be easily aligned and is taxonomically informative, the sequences can be used for classification and phylogenetic inferences. Several new Neocallimastigomycetes clades were obtained, some of which represent putative novel lineages such as a clade from feces of the rodent Dolichotis patagonum (mara)

    Simultaneous Metabarcoding and Quantification of Neocallimastigomycetes from Environmental Samples:Insights into Community Composition and Novel Lineages

    Get PDF
    Anaerobic fungi from the herbivore digestive tract (Neocallimastigomycetes) are primary lignocellulose modifiers and hold promise for biotechnological applications. Their molecular detection is currently difficult due to the non-specificity of published primer pairs, which impairs evolutionary and ecological research with environmental samples. We developed and validated a Neocallimastigomycetes-specific PCR primer pair targeting the D2 region of the ribosomal large subunit suitable for screening, quantifying, and sequencing. We evaluated this primer pair in silico on sequences from all known genera, in vitro with pure cultures covering 16 of the 20 known genera, and on environmental samples with highly diverse microbiomes. The amplified region allowed phylogenetic differentiation of all known genera and most species. The amplicon is about 350 bp long, suitable for short-read high-throughput sequencing as well as qPCR assays. Sequencing of herbivore fecal samples verified the specificity of the primer pair and recovered highly diverse and so far unknown anaerobic gut fungal taxa. As the chosen barcoding region can be easily aligned and is taxonomically informative, the sequences can be used for classification and phylogenetic inferences. Several new Neocallimastigomycetes clades were obtained, some of which represent putative novel lineages such as a clade from feces of the rodent Dolichotis patagonum (mara)

    Negative impacts of dominance on bee communities: Does the influence of invasive honey bees differ from native bees?

    Get PDF
    Invasive species can reach high abundances and dominate native environments. One of the most impressive examples of ecological invasions is the spread of the African subspecies of the honey bee throughout the Americas, starting from its introduction in a single locality in Brazil. The invasive honey bee is expected to more negatively impact bee community abundance and diversity than native dominant species, but this has not been tested previously. We developed a comprehensive and systematic bee sampling scheme, using a protocol deploying 11,520 pan traps across regions and crops for three years in Brazil. We found that invasive honey bees are now the single most dominant bee species. Such dominance has not only negative consequences for abundance and species richness of native bees but also for overall bee abundance (i.e., strong “numerical” effects of honey bees). Contrary to expectations, honey bees did not have stronger negative impacts than other native bees achieving similar levels of dominance (i.e., lack of negative “identity” effects of honey bees). These effects were markedly consistent across crop species, seasons and years, and were independent from land-use effects. Dominance could be a proxy of bee community degradation and more generally of the severity of ecological invasions.info:eu-repo/semantics/publishedVersio

    Temporal scale‐dependence of plant–pollinator networks

    Get PDF
    The study of mutualistic interaction networks has led to valuable insights into ecological and evolutionary processes. However, our understanding of network structure may depend upon the temporal scale at which we sample and analyze network data. To date, we lack a comprehensive assessment of the temporal scale-dependence of network structure across a wide range of temporal scales and geographic locations. If network structure is temporally scale-dependent, networks constructed over different temporal scales may provide very different perspectives on the structure and composition of species interactions. Furthermore, it remains unclear how various factors – including species richness, species turnover, link rewiring and sampling effort – act in concert to shape network structure across different temporal scales. To address these issues, we used a large database of temporally-resolved plant–pollinator networks to investigate how temporal aggregation from the scale of one day to multiple years influences network structure. In addition, we used structural equation modeling to explore the direct and indirect effects of temporal scale, species richness, species turnover, link rewiring and sampling effort on network structural properties. We find that plant–pollinator network structure is strongly temporally-scale dependent. This general pattern arises because the temporal scale determines the degree to which temporal dynamics (i.e. phenological turnover of species and links) are included in the network, in addition to how much sampling effort is put into constructing the network. Ultimately, the temporal scale-dependence of our plant–pollinator networks appears to be mostly driven by species richness, which increases with sampling effort, and species turnover, which increases with temporal extent. In other words, after accounting for variation in species richness, network structure is increasingly shaped by its underlying temporal dynamics. Our results suggest that considering multiple temporal scales may be necessary to fully appreciate the causes and consequences of interaction network structure.Fil: Schwarz, Benjamin. Albert Ludwigs University of Freiburg; AlemaniaFil: Vazquez, Diego P.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Cara Donna, Paul J.. Chicago Botanic Garden; Estados UnidosFil: Knight, Tiffany M.. German Centre for Integrative Biodiversity Research; AlemaniaFil: Benadi, Gita. Albert Ludwigs University of Freiburg; AlemaniaFil: Dormann, Carsten F.. Albert Ludwigs University of Freiburg; AlemaniaFil: Gauzens, Benoit. German Centre for Integrative Biodiversity Research; AlemaniaFil: Motivans, Elena. German Centre for Integrative Biodiversity Research; AlemaniaFil: Resasco, Julian. University of Colorado; Estados UnidosFil: BlĂŒthgen, Nico. Universitat Technische Darmstadt; AlemaniaFil: Burkle, Laura A.. Montana State University; AlemaniaFil: Fang, Qiang. Henan University of Science and Technology; ChinaFil: Kaiser Bunbury, Christopher N.. University of Exeter; Reino UnidoFil: AlarcĂłn, Ruben. California State University; Estados UnidosFil: Bain, Justin A.. Chicago Botanic Garden; Estados UnidosFil: Chacoff, Natacha Paola. Universidad Nacional de TucumĂĄn. Instituto de EcologĂ­a Regional. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Instituto de EcologĂ­a Regional; ArgentinaFil: Huang, Shuang Quan. Central China Normal University; ChinaFil: LeBuhn, Gretchen. San Francisco State University; Estados UnidosFil: MacLeod, Molly. Rutgers University; Estados UnidosFil: Petanidou, Theodora. Univversity of the Aegean; Estados UnidosFil: Rasmussen, Claus. University Aarhus; DinamarcaFil: Simanonok, Michael P.. Montana State University; Estados UnidosFil: Thompson, Amibeth H.. German Centre for Integrative Biodiversity Research; AlemaniaFil: FrĂŒnd, Jochen. Albert Ludwigs University of Freiburg; Alemani
    • 

    corecore