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Abstract

Establishing a solid taxonomic framework is crucial for enabling discovery and documentation efforts. This ensures effective 
communication between scientists as well as reproducibility of results between laboratories, and facilitates the exchange and 
preservation of biological material. Such framework can only be achieved by establishing clear criteria for taxa characteriza-
tion and rank assignment. Within the anaerobic fungi (phylum Neocallimastigomycota), the need for such criteria is especially 
vital. Difficulties associated with their isolation, maintenance and long-term storage often result in limited availability and loss 
of previously described taxa. To this end, we provide here a list of morphological, microscopic, phylogenetic and phenotypic 
criteria for assessment and documentation when characterizing newly obtained Neocallimastigomycota isolates. We also rec-
ommend a polyphasic rank-assignment scheme for novel genus-, species- and strain-level designations for newly obtained 
Neocallimastigomycota isolates.

Members of the kingdom fungi colonize a wide range of terrestrial, aquatic, marine, animal- and plant-associated ecosystems; and 
collectively display a great capacity for growth and survival under a wide range of environmental conditions [1]. This remarkable 
ability for niche adaptation is reflected in the high level of morphotypic, microscopic, phenotypic and genomic traits exhibited 
by members of the kingdom. Fungal taxonomists investigate the relationships between and within fungal lineages by identifying, 
assessing and comparing such traits across taxa. The broad field of fungal taxonomy encompasses nomenclature (assigning names 
and establishing procedures for naming), characterization (defining and using a set of experimental procedures to document 
informative traits allowing discrimination between taxa) and classification (establishing a framework for assigning taxa into 
taxonomic ranks, and using such framework for assigning ranks to newly isolated strains). Fungal nomenclature is governed 
by the International Code of Nomenclature for algae, fungi, and plants (hereafter, the Code). The Code [2] sets formal require-
ments for nomenclature of novel taxa, including registration of nomenclature novelties in recognized repositories (MycoBank 
or Index Fungorum), type designation, type material deposition in appropriate repositories, and guidelines for publication of 
a valid name and ensuring its legitimacy. Criteria for characterization and classification are set by the International Committee 
of Taxonomy of Fungi (ICTF). The recent manuscript by Aime et al. [3] elaborates on the best practices for ensuring availability 
of descriptive data and preventing publication of taxonomically superfluous names. However, unlike rules of nomenclature that 
are applicable to all the Mycota, criteria for characterization and classification/rank assignment can differ greatly between fungal 
lineages. As such, lineage-specific guidelines for characterization and classification should be developed and formulated by the 
relevant scientific community [3].
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The anaerobic fungi (phylum Neocallimastigomycota) inhabit the alimentary tract of herbivores, and display multiple adaptive 
strategies that enable them to survive and thrive in this permanently anoxic, prokaryote-dominated ecosystem. Multiple novel 
anaerobic fungal genera [4–10] and species [11–13] have recently been described. In spite of such progress, criteria for charac-
terization and rank assignment for novel isolates in the Neocallimastigomycota have not been formulated, although discussions 
on the relative importance of specific traits as part of rank assignment justifications in some prior taxa description manuscripts 
[4, 7, 14] have been proposed. Therefore, the purpose of this manuscript is twofold. Firstly we provide a list of morphological, 
microscopic, phylogenetic and phenotypic criteria that should be assessed and documented when characterizing newly obtained 
Neocallimastigomycota isolates. Secondly, to suggest a rank assignment scheme for accommodating newly obtained Neocal-
limastigomycota isolates. This is especially important for the anaerobic gut fungi, because of difficulties associated with their 
isolation, maintenance and long-term storage.

Before undertaking detailed characterization efforts, ensuring the purity of isolates obtained is vital. Anaerobic fungi could be 
co-isolated or contaminated by bacteria and methanogenic archaea during the isolation and maintenance process. Alternatively, 
mixed cultures of anaerobic gut fungi could be obtained during the isolation process. To ensure purity, isolates should be derived 
from a single colony rather than by dilution to extinction procedures. We recommend multiple rounds of dilution, rolling tubes 
and colony picking of the culture. Various antibiotic cocktails to guard against bacterial contamination are commonly employed, 
and contamination is assessed by microscopic observation. Amplification and direct sequencing of genes known to exhibit 
minimal strain variability could be undertaken, with the quality of obtained sequencing data used as an additional confirmation 
of the purity of the sample.

PROPOSED CRITERIA FOR NEOCALLIMASTIGOMYCOTA CHARACTERIZATION
A list of morphotypic, microscopic, phenotypic and phylogenetic criteria recommended for describing novel Neocallimas-
tigomycota isolates is provided in Table 1. The proposed criteria were formulated through in-depth discussions within the 
community of Neocallimastigomycota taxonomists, as well as by assessing arguments presented in prior taxa description 
papers [4–7, 14] and reviews [15] during the last four decades. The criteria are meant to be thorough and detailed to enable 
consistent and information-grounded assessments of novelty, and to preserve knowledge for future comparative purposes. 
However, they are not meant to be onerous to the point of discouraging characterization efforts or to dictate a specific 
formatting over another (e.g. full-length manuscripts over fungal diversity notes). The criteria are also not intended to 
constrain characterization efforts and reporting additional traits should certainly be encouraged (for example, documenting 
unique previously unreported microscopic structures, unique growth phenotypes, information on gene copy numbers for 
various loci, and levels of enzymatic activities). Criteria in Table 1 are divided to two categories: those that are indispensable 
for accurate assessment of the identity and taxonomy of obtained strains, and those that are recommended for complete 
description of new Neocallimastigomycota isolates. In addition, a list of additional criteria reported in prior taxa description 
manuscripts is provided in Table 2. While neither indispensable nor recommended for anaerobic gut fungi characterization, 
these additional criteria could be helpful for providing a complete description of new Neocallimastigomycota isolates.

The utilization of multi-locus based phylogeny [16], whole genome phylogenomic analysis [17], genome-wide synteny [18] 
and amino acid identity estimates [19] in Neocallimastigomycota taxonomy could provide extremely valuable additional 
information and thresholds for circumscribing ranks within the lineage. Such efforts for anaerobic fungi, however, have 
lagged behind other major fungal lineages. This is a reflection of the lack of adequate genome/transcriptome coverage for all 
representative genera, as well as the loss of multiple historic strains. The value and insights provided by comparative –omics 
approaches are undisputed; however, we do not propose such efforts is not proposed as a requirement for the taxa description 
process in the Neocallimastigomycota.

Although the International Committee on Systematics of Prokaryotes would set forth subcommittees to enact minimal and 
recommended standards for description of novel genera and species; no such requirements are set forth for by the ICTF for 
Fungi. The criteria proposed here are meant to establish an agreement in the community regarding the Neocallimastigomycota 
and to guide the expectations of authors, reviewers, and editors in the Neocallimastigomycota community. Details and 
illustrations of the listed morphotypic and microscopic features have been provided in prior reviews [15, 20]. The relative 
importance of various criteria (i.e. indispensable or recommended) is highlighted in Table 1.

SPECIES HYPOTHESIS AND RANK ASSIGNMENT IN THE NEOCALLIMASTIGOMYCOTA
What criteria govern the accommodation of an anaerobic fungal isolate into a specific rank, and how can boundaries be 
circumscribed? Analysis of prior taxa description papers demonstrates wide variations in arguments set forth for rank 
assignments. Many earlier authors were ‘splitters’, proposing a new species designation based on minor criteria, some of 
which could be a function of inter-laboratory variability and/or media composition (e.g. Caecomyces communis and C. equi 
[21], Piromyces communis and P. dumbonicus [22], Neocallimastix frontalis and N. hurleyensis [23]), see references [15] and 
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[24] for additional details. New species have also been proposed based on the identification of specific microscopic trait(s), 
but such traits could have been overlooked in taxa description manuscripts of closest relatives. More recent studies have 
proposed new species for morphologically identical strains solely based on sequence divergence values (e.g. P. irregularis 
[11]). In contrast, some studies have been extremely conservative in rank assignment, proposing a new species in spite of 
clear differences justifying proposition of a new genus (e.g. Neocallimastix joyonii [25]). Furthermore, earlier studies relied 
solely on microscopic data, while newer taxa description manuscripts reported both microscopic as well as molecular data 

Table 1. Proposed reporting criteria for characterization of new Neocallimastigomycota taxa

Parameter Information to provide

Indispensable criteria for accurate assessment

I. Morphology/microscopic criteria*

1. Colony morphology •	 Shape, size, colour, and edge-centre differences.

2. Liquid growth patterns •	 Thin/heavy biofilm, powdery/sand-like, cottony, ball or floc-like, attachment to the container’s glass surface, colour.

3. Zoospores* •	 Zoospore flagellation pattern: monoflagellated (n=1–4); polyflagellated (n>4)
•	 Zoospore size
•	 Length of flagella

4. Thallus development pattern •	 Monocentric or polycentric

5. Sporangial development† •	 Endogenous, pseudo-intercalary endogenous, and/or exogenous in monocentric taxa; terminal and/or intercalary in polycentric taxa.

6. Sporangiophores† •	 Sporangiophore dimensions (length, width), branching (branched, unbranched), shape (eggcup shape, wide-flattened), and size (wide, narrow).
•	 Occurrence of subsporangial swelling.

7. Sporangia •	 Sporangial shapes (e.g., globose, ellipsoidal with or without constriction at the middle, ovoid, bowling pin-shaped, egg-shaped, pyriform, heart-shaped, 
triangular, mucronate with a pointed apex, elongated, rhomboidal), size, and arrangement.

•	 Sporangial uniformity or pleomorphy, shape differences between various types of sporangia (e.g. exogenous versus endogenous versus intercalary).
•	 Sporangial necks (the point between sporangia and sporangiophore or sporangia and rhizoid) (e.g., tightly constricted, broad), and neck ports (narrow 

or wide).
•	 Occurrence of specific sporangial structures, e.g. papillae.

8. Rhizoidal growth pattern •	 Filamentous or bulbous.
•	 For filamentous growth: occurrence of narrow and wide hyphae, the level of branching and twisting, constriction patterns (regular or irregular intervals), 

and presence of rhizoidal swellings.
•	 For bulbous growth: holdfast patterns (single, multiple), number of sporangiophore per holdfast, and number of sporangia.

II. Phylogenetic criteria

1. Internal transcribed spacer-1 (ITS1)‡ •	 Sequences from a minimum of 12 clones are required. Alternatively, sequences from 12 distinct copies corresponding to the amplified fragment from a 
sequenced genome could be utilized.

•	 Documenting within strain variability, and phylogenetic position and relation to currently described taxa.

2. D1/D2 variable region of the large ribosomal 
subunit (D1/D2 LSU)§

•	 Sequences from a minimum of 12 clones are required. Alternatively, sequences from 12 distinct copies corresponding to the amplified fragment from a 
sequenced genome could be utilized.

•	 Documenting within strain variability, and phylogenetic position and relation to currently described taxa.

Recommended criteria for complete description of new Neocallimastigomycota isolates.

I. Morphology/microscopic criteria

1. Zoospore release mechanism •	 How zoospores are released: through an apical pore, through rupture of the sporangial wall, or a combination of both.
•	 Sporangial fate: dissolution, detachment, and/or remaining intact after spore release.

2. Additional structures •	 Formation of additional specific structures during the life cycle, e.g. hyphal coils, resting stages (particularly in old cultures).

3. Stability of key traits|| •	 Examining cultures grown under different conditions, substrates, as well as during different stages of growth to examine trait consistency and association 
with various growth stages or culturing conditions.

II. Phylogenetic criteria

1. Ribosomal RNA operon¶,# •	 A region covering ITS1-5.8S rRNA-ITS2-D1/D2 LSU

*Determining the number of flagella on some spores could be challenging, with visualization angles and aggregation of multiple flagella in a single locomotory organelle during swimming leading to uncertain 
counts. Observing and counting flagella from multiple (e.g. >50) zoospores is recommended when possible, as well as reporting average numbers for polyflagellated taxa, and frequency of oligo (bi-, tri-, and tetra-) 
flagellation in ‘mono’ flagellated taxa.
†Sporangia and sporangiophore pleomorphy has been observed in multiple genera (e.g. in genera Feramyces [7], and Liebetanzomyces [39]), and could be more pronounced when different media compositions are 
used (e.g. Fig. S1 in [20]). This could be avoided by the utilization of standard media (e.g. cellobiose-based media used in [40]). Further, the level of pleomorphy in itself should be reported and could be used as an 
informative trait for taxa delineation.
‡Recommended primers to use: for the ITS1 region only, primers MN100 (TCCTACCCTTTGTGAATTTG) and MNGM2 (CTGCGTTCTTCATCGTTGCG) [41]. In case of possible mismatches, as observed previously for 
Buwchfawromyces [4], amplifying longer regions and bioinformatically extracting the ITS1 region can also be achieved using primers Neo 18S For (AATCCTTCGGATTGGCT) and Neo 5.8S Rev (CGAGAACCAAGAGATCCA) 
for amplifying partial 18S rRNA gene, full ITS1 region and partial 5.8S rRNA gene [42], or ITS1F (TCCGTAGGTGAACCTGCGG) and ITS4R (TCCTCCGCTTATTGATATGC) for amplifying the whole ITS region encompassing 
ITS1-5.8S rRNA-ITS2 [43].
§Recommended primers to use for amplifying the D1/D2 domains within the LSU rRNA are the general fungal primers NL1F (GCATATCAATAAGCGGAGGAAAAG) and NL4R (GGTCCGTGTTTCAAGACGG) [44], or pairing the 
general fungal forward primer NL1F with the anaerobic fungal-specific reverse primer GGNL4 (TCAACATCCTAAGCGTAGGTA) [45].
||Continuous subculturing and ‘domestication’ of isolates could lead to changes in an isolate’s microscopic features. For example, polycentric taxa often cease to produce sporangia or zoospores with continuous 
subculturing [46], and hence microscopic characterization of such taxa should be undertaken promptly post isolation.
¶Recommended primers to use are ITS1F-NL4R [24, 47].
#Cloning and sequencing the entire operon and bioinformatically extracting ITS1 and LSU region for phylogenetic analysis could be a substitute for individual ITS1 and LSU amplification and sequencing described 
above. The same minimum number of clones [12] recommended for individual ITS1 and D1/D2 LSU amplicons should be observed.
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(e.g. ITS1, D1/D2 loci). Recent comparative studies have used a broader, whole-genome phylogenomic approach for taxa 
delineation [17]. However, as stated above, these efforts, while extremely promising, require the broad availability of genomic 
and transcriptomic data. Further, preliminary efforts have suggested that tree topologies recovered by whole genome phylog-
enomic analysis are often accurately reflected by those recovered by D1/D2 LSU phylogenetic analysis. As such, generation 
and assessment of whole genome or transcriptome data is not seen as absolutely required when formulating rank assignment 
decisions for new isolates within the Neocallimastigomycota.

Due to the lack of consistency in rank assignment approaches highlighted above, we propose guidelines for combining microscopic 
features and phylogenetic analysis for rank assignment decisions in the Neocallimastigomycota. Broadly, the scheme is guided 
by the following principles:

•	 Genus-defining criteria include: (1) zoospore flagellation pattern (monoflagellated or polyflagellated), (2) thallus developmental 
pattern (monocentric or polycentric, determined by 4′,6-diamidino-2-phenylindole or bisbenzimide staining of live cultures 
and visualization by fluorescence microscopy), and (3) rhizoidal growth pattern (filamentous or bulbous) are genus-defining 
criteria in the Neocallimastigomycota. All species within a genus should display the same phenotype with regard to these 
three criteria.

•	 Novel genera and species designations require clear documentation of phylogenetic novelty in both ITS1 and D1/D2 LSU loci 
at specific thresholds, as well as documenting clear and stable differences in macroscopic and/or microscopic features from 
the nearest described taxa.

Specifically, we propose that a novel genus designation should be conferred on new isolates forming a monophyletic clade that 
is distinct from all previously described genera in D1/D2 LSU and ITS1 phylogenetic trees with adequate statistical support 
(e.g. >70 % bootstrap, >95 % posterior probability) and exhibiting unambiguous morphological differences to their closest 
phylogenetic relatives in one or more of the three cardinal criteria of spore flagellation, thallus developmental and rhizoidal 
growth patterns. Detection of a difference in such criteria would justify proposing a new genus, regardless of percentage 
sequence divergence estimates to its closest cultured and described relative. In cases in which no such differences are observed; 
a new genus should only be proposed based on exhibiting a high level of sequence divergence in D1/D2 LSU and ITS1 loci 
that justifies accommodation as a new genus rather than a species. Sequence divergence values are clearly a function of the 
region amplified, alignment methods (pairwise versus multiple sequence alignments), and settings employed (e.g. gap opening 
and gap extension penalties). A minimum D1/D2 LSU sequence divergence threshold of 3 % from the closest cultured, validly 
described taxa is proposed for genus level delineation (calculated using relative blastn with the default parameters of gap 
existence cost, 5; gap extension cost, 2; match score, 2; mismatch score, −3). A list of validly described taxa as defined by 
the Code has recently been compiled [20]. Utilizing this threshold value with existing genera yielded groupings consistent 
with the current ones with two exceptions: the genus Piromyces where the intra-genus sequence divergence cutoff of the D1/
D2-LSU region ranges between 0 and 5.7 %, and the Anaeromyces–Liebetanzomyces–Capellomyces–Oontomyces clade where 
the inter-genus sequence divergence ranges between 1.8 and 2.5 %. However, within this clade, the propositions of different 
genera have been justified based on a clear difference in thallus developmental patterns (polycentric in Anaeromyces versus 
monocentric in the three other genera), a criterion that justifies proposing a new genus regardless of sequence divergence 
estimates (as stated earlier). Similarly, a minimum ITS1 sequence divergence threshold of 5 % from the closest relative 
(calculated using blastn with the default parameters as outlined above) against cultured, validly described taxa is proposed 

Table 2. Additional criteria reported in prior taxa description manuscripts

Parameter Information to provide

Spore ultrastructure •	 TEM pictures for cross and longitudinal sections of the flagella.
•	 Sections through the zoospore body to show the organelles (e.g. nucleus, ribosome-like particles, hydrogenosome, 

microtubules)
•	 Sections through thalli and sporangia.

Substrate utilization pattern •	 Ability to grow on a wide range of sugar monomers, dimers, oligomers, and plant polysaccharides (e.g. starch, cellulose, xylan, 
pectin/polygalacturonic acid).

•	 Ability to grow on proteins, complex media, and/or fatty acids.

Oxygen sensitivity •	 Viability after challenging with atmospheric air for various time intervals (e.g. 0.5, 1, 3, 12 h or 1 day)

Fermentation end-products •	 Production and quantification of volatile fatty acids, dicarboxylic acids, alcohol, H2, CO2, and other metabolic end-products.
•	 Variation in products nature/ratio when grown on different substrates.

Biogeography and ecological 
distribution

•	 Similarity search to identify closely related strains and species encountered in previous culture-independent surveys, whether 
the new isolates represent a previously reported yet-uncultured lineage, as well as possible host preferences and biogeographic 
patterns.
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for genus level delineation. This threshold value is based on similar assessments of inter-genus sequence divergence estimates 
[26, 27], and has subsequently been used in culture-independent diversity surveys [28, 29].

We propose that a novel species designation within an existing genus should be used to accommodate isolate(s) forming a 
monophyletic branch that is distinct from all other species within the genus in both D1/D2 LSU and ITS1 phylogenetic trees. 
Multiple ITS1 and D1/D2 LSU sequences from strain(s), especially the type strain, should be examined (Table 1). There could 
potentially be occasional overlaps between one or more ITS1 sequences from a novel species and those from an existing species 
within the same genus due to the wide within-strain (i.e. intragenomic) ITS1 sequence divergence [24]. However, encountering 
overlaps in D1/D2 LSU rRNA sequence trees should preclude proposing a novel species.

Several factors should be taken into consideration when proposing minimum D1/D2 LSU or ITS1 sequence divergence thresholds 
for novel species assignment. Only seven out of the twenty currently described genera have more than one species. Within 
these genera, the majority of prior rank assignment decisions were primarily based on microscopic differences. Within genera 
with multiple species for which sequence information is available, D1/D2 LSU sequence divergence ranged between 1.8 % (i.e. 
for Capellomyces foraminis versus C. elongis, and Orpinomyces joyonii versus O. intercalaris), and 2.2 % (i.e. for Neocallimastix 
frontalis versus N. cameroonii, and Anaeromyces mucronatus versus A. contortus). As such, a threshold value of 2 % is proposed, 
and such value has been used for species-level operational taxonomic unit (OTU) designation in culture-independent surveys 
[24]. Similarly, an ITS1 sequence divergence estimate of 2 % is proposed as a general guide for species-level assignments, while 
taking into account within-strain sequence divergence, a phenomenon that could result in a range of values when utilizing various 
copies of the ITS1 locus. This value has also been suggested in [26] and used for species-level OTU designation in subsequent 
diversity surveys [28, 29].

In addition, assessment of all traits described in Table 1, and comparison to all other members of the genus should be 
undertaken. Distinct differences in one or more stable morphological feature(s) are commonly observed between new and 
existing species within the same genus, e.g. the formation of intercalary sporangia in Orpinomyces intercalaris differentiates 
it from O. joyonii. Reporting such characteristics represents a very important resource to enhance knowledge of the overall 
characteristics and capabilities of a genus.

Finally, we propose that a subspecies designation should be used to describe strains that show low sequence divergence when 
compared to previously reported and validly published Neocallimastigomycota species, and/or exhibit minor differences 
in microscopic and/or phenotypic traits, e.g. substrate utilization patterns, fermentation products, growth rate, size and 
organization of specific microscopic structures. For strains exhibiting exact morphological, microscopic, phylogenetic and 
phenotypic criteria, a conferre (cf.) strain designation should be used [20].

The requirements highlighted above are mostly concerned with procedures for validly describing and naming novel isolates, 
as well as for their assignment to a specific rank within the Neocallimastigomycota. Such procedures, however, should not 
impede progress in wider aspects of Neocallimastigomycota biology. Indeed, the use of alphanumeric designations to identify 
strains has been a long-standing and widely accepted approach in the fields of biotechnology [30–33], biochemistry [34–36], 
cell biology [37, 38] and beyond.

Finally, it is important to note that the proposed criteria for characterization and rank assignment in this manuscript are a 
reflection of the current state of knowledge and methodological feasibility. Future periodic evaluations should be undertaken 
for addition, removal, or modification of the proposed criteria to account for newer observations as well as experimental 
and bioinformatic advances.
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