130 research outputs found

    A Noninvasive Hair Sampling Technique to Obtain High Quality DNA from Elusive Small Mammals

    Get PDF
    Noninvasive genetic sampling approaches are becoming increasingly important to study wildlife populations. A number of studies have reported using noninvasive sampling techniques to investigate population genetics and demography of wild populations1. This approach has proven to be especially useful when dealing with rare or elusive species2. While a number of these methods have been developed to sample hair, feces and other biological material from carnivores and medium-sized mammals, they have largely remained untested in elusive small mammals. In this video, we present a novel, inexpensive and noninvasive hair snare targeted at an elusive small mammal, the American pika (Ochotona princeps). We describe the general set-up of the hair snare, which consists of strips of packing tape arranged in a web-like fashion and placed along travelling routes in the pikas’ habitat. We illustrate the efficiency of the snare at collecting a large quantity of hair that can then be collected and brought back to the lab. We then demonstrate the use of the DNA IQ system (Promega) to isolate DNA and showcase the utility of this method to amplify commonly used molecular markers including nuclear microsatellites, amplified fragment length polymorphisms (AFLPs), mitochondrial sequences (800bp) as well as a molecular sexing marker. Overall, we demonstrate the utility of this novel noninvasive hair snare as a sampling technique for wildlife population biologists. We anticipate that this approach will be applicable to a variety of small mammals, opening up areas of investigation within natural populations, while minimizing impact to study organisms

    Identification of Genetically Important Individuals of the Rediscovered Floreana Galápagos Giant Tortoise (Chelonoidis elephantopus) Provide Founders for Species Restoration Program

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Species are being lost at an unprecedented rate due to human-driven environmental changes. The cases in which species declared extinct can be revived are rare. However, here we report that a remote volcano in the Galápagos Islands hosts many giant tortoises with high ancestry from a species previously declared as extinct: Chelonoidis elephantopus or the Floreana tortoise. Of 150 individuals with distinctive morphology sampled from the volcano, genetic analyses revealed that 65 had C. elephantopus ancestry and thirty-two were translocated from the volcano’s slopes to a captive breeding center. A genetically informed captive breeding program now being initiated will, over the next decades, return C. elephantopus tortoises to Floreana Island to serve as engineers of the island’s ecosystems. Ironically, it was the haphazard translocations by mariners killing tortoises for food centuries ago that created the unique opportunity to revive this “lost” species today. CORRECTION PUBLISHED 13 SEPT 2017: The original version of this Article contained an error in the title of the paper, where the word “Provides” was incorrectly given as “Provide”. This has now been corrected in the PDF and HTML versions of the Article and in the accompanying Supplementary Information file. The attached full-text article has been updated to incorporate this change

    Giant tortoise genomes provide insights into longevity and age-related disease

    Get PDF
    © 2018, The Author(s), under exclusive licence to Springer Nature Limited. Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George—the iconic last member of Chelonoidis abingdonii—and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations

    Diversity, distribution and conservation of the terrestrial reptiles of Oman (Sauropsida, Squamata)

    Get PDF
    All authors: Salvador Carranza , Meritxell Xipell, Pedro Tarroso, Andrew Gardner, Edwin Nicholas Arnold, Michael D. Robinson, Marc Simó-Riudalbas, Raquel Vasconcelos, Philip de Pous, Fèlix Amat, Jiří Šmíd, Roberto Sindaco, Margarita Metallinou †, Johannes Els, Juan Manuel Pleguezuelos, Luis Machado, David Donaire, Gabriel Martínez, Joan Garcia-Porta, Tomáš Mazuch, Thomas Wilms, Jürgen Gebhart, Javier Aznar, Javier Gallego, Bernd-Michael Zwanzig, Daniel Fernández-Guiberteau, Theodore Papenfuss, Saleh Al Saadi, Ali Alghafri, Sultan Khalifa, Hamed Al Farqani, Salim Bait Bilal, Iman Sulaiman Alazri, Aziza Saud Al Adhoobi, Zeyana Salim Al Omairi, Mohammed Al Shariani, Ali Al Kiyumi, Thuraya Al Sariri, Ahmed Said Al Shukaili, Suleiman Nasser Al Akhzami.In the present work, we use an exceptional database including 5,359 records of 101 species of Oman’s terrestrial reptiles together with spatial tools to infer the spatial patterns of species richness and endemicity, to infer the habitat preference of each species and to better define conservation priorities, with especial focus on the effectiveness of the protected areas in preserving this unique arid fauna. Our results indicate that the sampling effort is not only remarkable from a taxonomic point of view, with multiple observations for most species, but also for the spatial coverage achieved. The observations are distributed almost continuously across the two-dimensional climatic space of Oman defined by the mean annual temperature and the total annual precipitation and across the Principal Component Analysis (PCA) of the multivariate climatic space and are well represented within 17 out of the 20 climatic clusters grouping 10% of the explained climatic variance defined by PC1 and PC2. Species richness is highest in the Hajar and Dhofar Mountains, two of the most biodiverse areas of the Arabian Peninsula, and endemic species richness is greatest in the Jebel Akhdar, the highest part of the Hajar Mountains. Oman’s 22 protected areas cover only 3.91% of the country, including within their limits 63.37% of terrestrial reptiles and 50% of all endemics. Our analyses show that large areas of the climatic space of Oman lie outside protected areas and that seven of the 20 climatic clusters are not protected at all. The results of the gap analysis indicate that most of the species are below the conservation target of 17% or even the less restrictive 12% of their total area within a protected area in order to be considered adequately protected. Therefore, an evaluation of the coverage of the current network of protected areas and the identification of priority protected areas for reptiles using reserve design algorithms are urgently needed. Our study also shows that more than half of the species are still pending of a definitive evaluation by the International Union for Conservation of Nature (IUCN).This work was funded by grants CGL2012-36970, CGL2015-70390-P from the Ministerio de Economía y Competitividad, Spain (cofunded by FEDER) to SC, the project Field study for the conservation of reptiles in Oman, Ministry of Environment and Climate Affairs, Oman (Ref: 22412027) to SC and grant 2014-SGR-1532 from the Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya to SC. MSR is funded by a FPI grant from the Ministerio de Economía y Competitividad, Spain (BES-2013-064248); RV, PT and LM were funded by Fundação para a Ciência e Tecnologia (FCT) through post-doc grants (SFRH/BPD/79913/2011) to RV, (SFRH/BPD/93473/2013) to PT and PhD grant (SFRH/BD/89820/2012) to LM, financed by Programa Operacional Potencial Humano (POPH) – Quadro de Referência Estrategico Nacional (QREN) from the European Social Fund and Portuguese Ministerio da Educação e Ciência

    Data from: Genetic evidence for ecological divergence in kokanee salmon

    No full text
    The evolution of locally adapted phenotypes among populations that experience divergent selective pressures is a central mechanism for generating and maintaining biodiversity. Recently, the advent of high-throughput DNA sequencing technology has provided tools for investigating the genetic basis of this process in natural populations of non-model organisms. Kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), occurs as two reproductive ecotypes, which differ in spawning habitat (tributaries vs. shorelines), however outside of the spawning season the two ecotypes co-occur in many lakes and lack diagnostic morphological characteristics. We used restriction site associated DNA (RAD) sequencing to identify 6,145 SNPs and genotype kokanee from multiple spawning sites in Okanagan Lake (British Columbia, Canada). Outlier tests revealed 18 loci putatively under divergent selection between ecotypes, all of which exhibited temporally stable allele frequencies within ecotypes. Six outliers were annotated to sequences in the NCBI database, two of which matched genes associated with early development. There was no evidence for neutral genetic differentiation, however, outlier loci demonstrated significant structure with respect to ecotype and had high assignment accuracy in mixed composition simulations. The absence of neutral structure combined with a small number of highly divergent outlier loci is consistent with theoretical predictions for the early stages of ecological divergence. These outlier loci were then applied to a realistic fisheries scenario in which additional RAD sequencing was used to genotype kokanee collected by trawl in Okanagan Lake, providing preliminary evidence that this approach may be an effective tool for conservation and management

    Diversity and relative abundance of the bacterial pathogen, Flavobacterium spp., infecting reproductive ecotypes of kokanee salmon

    Get PDF
    Background: Understanding the distribution and abundance of pathogens can provide insight into the evolution and ecology of their host species. Previous research in kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), found evidence that populations spawning in streams may experience a greater pathogen load compared with populations that spawn on beaches. In this study we tested for differences in the abundance and diversity of the gram-negative bacteria, Flavobacterium spp., infecting tissues of kokanee in both of these spawning habitats (streams and beaches). Molecular assays were carried out using primers designed to amplify a ~200 nucleotide region of the gene encoding the ATP synthase alpha subunit (AtpA) within the genus Flavobacterium. Using a combination of DNA sequencing and quantitative PCR (qPCR) we compared the diversity and relative abundance of Flavobacterium AtpA amplicons present in DNA extracted from tissue samples of kokanee collected from each spawning habitat. Results We identified 10 Flavobacterium AtpA haplotypes among the tissues of stream-spawning kokanee and seven haplotypes among the tissues of beach-spawning kokanee, with only two haplotypes shared between spawning habitats. Haplotypes occurring in the same clade as F. psychrophilum were the most prevalent (92% of all reads, 60% of all haplotypes), and occurred in kokanee from both spawning habitats (streams and beaches). Subsequent qPCR assays did not find any significant difference in the relative abundance of Flavobacterium AtpA amplicons between samples from the different spawning habitats. Conclusions We confirmed the presence of Flavobacterium spp. in both spawning habitats and found weak evidence for increased Flavobacterium diversity in kokanee sampled from stream-spawning sites. However, the quantity of Flavobacterium DNA did not differ between spawning habitats. We recommend further study aimed at quantifying pathogen diversity and abundance in population-level samples of kokanee combined with environmental sampling to better understand the ecology of pathogen infection in this species.Other UBCReviewedFacult

    Data from: Sockeye salmon repatriation leads to population re-establishment and rapid introgression with native kokanee

    No full text
    Re-establishing salmonid populations to areas historically occupied has substantial potential for conservation gains, however, such interventions also risk negatively impacting native resident stocks. Here, we assessed the success of the hatchery-assisted reintroduction of anadromous sockeye salmon (Oncorhynchus nerka) into Skaha Lake, British Columbia, Canada, and evaluated the genetic consequences for native kokanee, a freshwater-obligate ecotype, using single nucleotide polymorphism genotypic data collected from reference samples of spawning Okanagan River sockeye and Skaha Lake kokanee pre-sockeye reintroduction, along with annual trawl survey and angler-caught samples obtained over an eight-year period. Significant differentiation was detected between sockeye and kokanee reference samples, with >99% stock assignment. Low proportions of sockeye and hybrids were detected within 2008 and 2010 age-0 trawl samples, however, by 2012, 28% were sockeye, rising to 41% in 2014. The number of hybrids detected rose proportionally with the increase in sockeye, and exhibited an intermediate phenotype. Our results indicate that reintroduction of anadromous sockeye to Skaha Lake is succeeding, with large numbers returning to spawn. However, hybridization with native kokanee is of concern due to the potential for demographic or genetic swamping, with on-going genetic monitoring necessary to assess the long-term effects of introgression and to support interactive fisheries management
    corecore