192 research outputs found

    Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results

    Get PDF
    Candidate gene studies have been a key approach to the genetics of schizophrenia. Results of these studies have been confusing and no genes have been unequivocally implicated. The hypothesis-driven candidate gene literature can be appraised via comparison with the results of genome-wide association studies (GWAS)

    Enrichment of the local synaptic translatome for genetic risk associated with schizophrenia and autism spectrum disorder

    Get PDF
    Background Genes encoding synaptic proteins or mRNA targets of the RNA binding protein, Fragile X mental retardation protein (FMRP), have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants conferring risk to these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process which enables rapid and compartmentalized protein synthesis required for development and plasticity. Methods We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes encoding localized transcripts is more strongly associated with each disorder than non-localized transcripts. We also postulated that this subset of synaptic genes is responsible for associations attributed to FMRP targets. Results Schizophrenia associations were enriched in genes encoding localized synaptic transcripts compared to the remaining synaptic genes, or to the remaining localized transcripts; this also applied to ASD associations, although only for transcripts observed after stimulation by fear conditioning. The genetic associations with either disorder captured by these gene sets were independent of those derived from FMRP targets. Schizophrenia association was related to FMRP interactions with mRNAs in somata, but not in dendrites, whilst ASD association was related to FMRP binding in either compartment. Conclusions Our data suggest that synaptic transcripts capable of local translation are particularly relevant to the pathogenesis of schizophrenia and ASD, but do not characterize the associations attributed to current sets of FMRP targets

    Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia

    Get PDF
    Importance Schizophrenia is a clinically heterogeneous disorder. It is currently unclear how variability in symptom dimensions and cognitive ability is associated with genetic liability for schizophrenia. Objective To determine whether phenotypic dimensions within schizophrenia are associated with genetic liability to schizophrenia, other neuropsychiatric disorders, and intelligence. Design, Setting, and Participants In a genetic association study, 3 cross-sectional samples of 1220 individuals with a diagnosis of schizophrenia were recruited from community, inpatient, and voluntary sector mental health services across the UK. Confirmatory factor analysis was used to create phenotypic dimensions from lifetime ratings of the Scale for the Assessment of Positive Symptoms, Scale for the Assessment of Negative Symptoms, and the MATRICS Consensus Cognitive Battery. Analyses of polygenic risk scores (PRSs) were used to assess whether genetic liability to schizophrenia, other neuropsychiatric disorders, and intelligence were associated with these phenotypic dimensions. Data collection for the cross-sectional studies occurred between 1993 and 2016. Data analysis for this study occurred between January 2019 and March 2021. Main Outcomes and Measures Outcome measures included phenotypic dimensions defined from confirmatory factor analysis relating to positive symptoms, negative symptoms of diminished expressivity, negative symptoms of motivation and pleasure, disorganized symptoms, and current cognitive ability. Exposure measures included PRSs for schizophrenia, bipolar disorder, major depression, attention-deficit/hyperactivity disorder, autism spectrum disorder, and intelligence. Results Of the 1220 study participants, 817 were men (67.0%). Participants’ mean (SD) age at interview was 43.10 (12.74) years. Schizophrenia PRS was associated with increased disorganized symptom dimension scores in both a 5-factor model (β = 0.14; 95% CI, 0.07-0.22; P = 2.80 × 10−4) and a 3-factor model across all samples (β = 0.10; 95% CI, 0.05-0.15; P = 2.80 × 10−4). Current cognitive ability was associated with genetic liability to schizophrenia (β = −0.11; 95% CI, −0.19 to −0.04; P = 1.63 × 10−3) and intelligence (β = 0.23; 95% CI, 0.16-0.30; P = 1.52 × 10−10). After controlling for estimated premorbid IQ, current cognitive performance was associated with schizophrenia PRS (β = −0.08; 95% CI, −0.14 to −0.02; P = 8.50 × 10−3) but not intelligence PRS. Conclusions and Relevance The findings of this study suggest that genetic liability for schizophrenia is associated with higher disorganized dimension scores but not other symptom dimensions. Cognitive performance in schizophrenia appears to reflect distinct contributions from genetic liabilities to both intelligence and schizophrenia

    Psychosis and the level of mood incongruence in Bipolar Disorder are related to genetic liability for Schizophrenia

    Get PDF
    Abstract Importance Bipolar disorder (BD) overlaps schizophrenia in its clinical presentation and genetic liability. Alternative approaches to patient stratification beyond current diagnostic categories are needed to understand the underlying disease processes/mechanisms. Objectives To investigate the relationship between common-variant liability for schizophrenia, indexed by polygenic risk scores (PRS) and psychotic presentations of BD, using clinical descriptions which consider both occurrence and level of mood-incongruent psychotic features. Design Case-control design: using multinomial logistic regression, to estimate differential associations of PRS across categories of cases and controls. Settings & Participants 4399 BDcases, mean [sd] age-at-interview 46[12] years, of which 2966 were woman (67%) from the BD Research Network (BDRN) were included in the final analyses, with data for 4976 schizophrenia cases and 9012 controls from the Type-1 diabetes genetics consortium and Generation Scotland included for comparison. Exposure Standardised PRS, calculated using alleles with an association p-value threshold < 0.05 in the second Psychiatric Genomics Consortium genome-wide association study of schizophrenia, adjusted for the first 10 population principal components and genotyping-platform. Main outcome measure Multinomial logit models estimated PRS associations with BD stratified by (1) Research Diagnostic Criteria (RDC) BD subtypes (2) Lifetime occurrence of psychosis.(3) Lifetime mood-incongruent psychotic features and (4) ordinal logistic regression examined PRS associations across levels of mood-incongruence. Ratings were derived from the Schedule for Clinical Assessment in Neuropsychiatry interview (SCAN) and the Bipolar Affective Disorder Dimension Scale (BADDS). Results Across clinical phenotypes, there was an exposure-response gradient with the strongest PRS association for schizophrenia (RR=1.94, (95% C.I. 1.86, 2.01)), then schizoaffective BD (RR=1.37, (95% C.I. 1.22, 1.54)), BD I (RR= 1.30, (95% C.I. 1.24, 1.36)) and BD II (RR=1.04, (95% C.I. 0.97, 1.11)). Within BD cases, there was an effect gradient, indexed by the nature of psychosis, with prominent mood-incongruent psychotic features having the strongest association (RR=1.46, (95% C.I. 1.36, 1.57)), followed by mood-congruent psychosis (RR= 1.24, (95% C.I. 1.17, 1.33)) and lastly, BD cases with no history of psychosis (RR=1.09, (95% C.I. 1.04, 1.15)). Conclusion We show for the first time a polygenic-risk gradient, across schizophrenia and bipolar disorder, indexed by the occurrence and level of mood-incongruent psychotic symptoms

    Common risk alleles for schizophrenia within the major histocompatibility complex predict white matter microstructure

    Get PDF
    Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region – including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia

    Additive genetic variation in schizophrenia risk is shared by populations of African and European descent

    Get PDF
    Previous studies have emphasized ethnically heterogeneous human leukocyte antigen (HLA) classical allele associations to rheumatoid arthritis (RA) risk. We fine-mapped RA risk alleles within the major histocompatibility complex (MHC) in 2782 seropositive RA cases and 4315 controls of Asian descent. We applied imputation to determine genotypes for eight class I and II HLA genes to Asian populations for the first time using a newly constructed pan-Asian reference panel. First, we empirically measured high imputation accuracy in Asian samples. Then we observed the most significant association in HLA-DRβ1 at amino acid position 13, located outside the classical shared epitope (Pomnibus = 6.9 × 10(-135)). The individual residues at position 13 have relative effects that are consistent with published effects in European populations (His > Phe > Arg > Tyr ≅ Gly > Ser)--but the observed effects in Asians are generally smaller. Applying stepwise conditional analysis, we identified additional independent associations at positions 57 (conditional Pomnibus = 2.2 × 10(-33)) and 74 (conditional Pomnibus = 1.1 × 10(-8)). Outside of HLA-DRβ1, we observed independent effects for amino acid polymorphisms within HLA-B (Asp9, conditional P = 3.8 × 10(-6)) and HLA-DPβ1 (Phe9, conditional P = 3.0 × 10(-5)) concordant with European populations. Our trans-ethnic HLA fine-mapping study reveals that (i) a common set of amino acid residues confer shared effects in European and Asian populations and (ii) these same effects can explain ethnically heterogeneous classical allelic associations (e.g. HLA-DRB1*09:01) due to allele frequency differences between populations. Our study illustrates the value of high-resolution imputation for fine-mapping causal variants in the MHC

    Investigating the genetic architecture of general and specific psychopathology in adolescence

    Get PDF
    Whilst associations between polygenic risk scores (PRSs) for schizophrenia and various phenotypic outcomes have been reported, an understanding of developmental pathways can only be gained by modelling comorbidity across psychopathology. We examine how genetic risk for schizophrenia relates to adolescent psychosis-related and internalizing psychopathology using a latent modelling approach, and compare this to genetic risk for other psychiatric disorders, to gain a more comprehensive understanding of the developmental pathways at this age. PRSs for schizophrenia, major depressive disorder, neuroticism and bipolar disorder were generated for individuals in the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Multivariate linear regression was used to examine the relationships of these PRSs with psychopathology factors modelled within (i) a correlated factors structure and (ii) a bifactor structure. The schizophrenia PRS was associated with an increase in factors describing psychotic experiences, negative dimension, depression and anxiety, but, when modelling a general psychopathology factor based on these measures, specific effects above this persisted only for the negative dimension. Similar factor relationships were observed for the neuroticism PRS, with a (weak) specific effect only for anxiety once modelling general psychopathology. Psychopathology during adolescence can be described by a general psychopathology construct that captures common variance as well as by specific constructs capturing remaining non-shared variance. Schizophrenia risk genetic variants identified through genome-wide association studies mainly index negative rather than positive symptom psychopathology during adolescence. This has potentially important implications both for research and risk prediction in high-risk samples
    • …
    corecore