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Abstract

Background—Candidate gene studies have been a key approach to the genetics of

schizophrenia. Results of these studies have been confusing and no genes have been unequivocally

implicated. The hypothesis-driven candidate gene literature can be appraised via comparison with

the results of genome-wide association studies (GWAS).

Methods—We described the characteristics of hypothesis-driven candidate gene studies from

SZGene, and used pathway analysis to compare hypothesis-driven candidate genes with GWAS

results from the International Schizophrenia Consortium (ISC).

Results—SZGene contained 732 autosomal genes evaluated in 1,374 studies. These genes had

poor statistical power to detect genetic effects typical for human diseases, assessed only 3.7% of

genes in the genome, and had low marker densities per gene. Most genes were assessed once or

twice (76.9%), providing minimal ability to evaluate consensus across studies. The ISC had power

of 89% to detect a genetic effect typical for common human diseases and assessed 79% of known

autosomal common genetic variation. Pathway analyses did not reveal enrichment of smaller ISC

p-values in hypothesis-driven candidate genes nor did a comprehensive evaluation of meta-

hypotheses driving candidate gene selection (schizophrenia as a disease of the synapse or

neurodevelopment). The most studied hypothesis-driven candidate genes had no notable ISC

results (COMT, DRD3, DRD2, HTR2A, NRG1, BDNF, DTNBP1, and SLC6A4).

Conclusions—We did not find support for the idea that the hypothesis-driven candidate genes

studied in the literature were enriched for common variation involved in the etiology of

schizophrenia. Larger samples are required definitively to evaluate this conclusion.
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Introduction

Candidate gene studies have been a major focus in schizophrenia research with the SZGene

database listing >1400 studies since 1965 (Allen et al., 2008). In contrast, there are ~2200

PubMed citations for “schizophrenia randomized controlled trials”. Until five years ago,

genetic studies could investigate only an extremely small proportion of the genome due to

genotyping and cost limitations. Investigators thus had to focus on small numbers genetic

markers, genes, and samples. In hypothesis-driven candidate gene studies, targets were

selected based on ideas about pathophysiology or gene location under a linkage peak

(Cichon et al., 2009). For most biomedical disorders (including schizophrenia), the results of

these studies were inconsistent or confusing (Ioannidis et al., 2001). It is unclear whether

this reflects poor choices of candidate genes or inadequate assessment (i.e., small samples or

incomplete coverage of common genetic variation).

Genotyping and cost improvements now permit routine assessment of a million or more

genetic variants distributed across the genome (Beaudet and Belmont, 2008). GWAS can

extract information from most common genetic variants in the genome either through direct

assessment of single nucleotide polymorphisms (SNPs) or indirectly via linkage

disequilibrium between genotyped SNPs and unmeasured but correlated genetic variants.

Despite the advantages of genome-wide genotyping (Hindorff et al., 2009), stringent

adjustment for multiple comparisons is required which necessitates the use of large sample

collections.

Ten GWAS for schizophrenia have been published (Athanasiu et al., Kirov et al., 2009,

Lencz et al., 2007, Need et al., 2009, O’Donovan et al., 2008, Purcell et al., 2009, Shi et al.,

2009, Shifman et al., 2008, Stefansson et al., 2009, Sullivan et al., 2008). Given that some

GWAS had larger samples and more comprehensive genotyping than typical for the

candidate gene literature, GWAS may be better placed to capture true associations than

earlier studies. Indeed, GWAS have yielded highly significant and replicated associations

for schizophrenia including genetic variation in the MHC region, TCF4, and ZNF804A

(O’Donovan et al., 2008, Purcell et al., 2009, Shi et al., 2009, Stefansson et al., 2009). A

lack of congruity has been noted between the hypothesis-driven candidate genes for

schizophrenia and the best findings from GWAS. This may be typical for biomedical

diseases where results from large GWAS infrequently correspond to a priori candidate

genes (Hindorff et al., Hindorff et al., 2009).

For schizophrenia, there are multiple reasons for the lack of overlap between GWAS and

candidate gene studies. A key possibility is that prior hypotheses about the genetics of

schizophrenia are incorrect. However, alternative explanations require exploration before

accepting such an important conclusion. First, current GWAS chips provide coverage for

most but not all of the genome (International HapMap Consortium, 2005) so particular
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regions and non-SNP genetic variation may be covered poorly. Second, power may be

insufficient. Although GWAS tend to have large sample sizes by historical standards, the

necessity to adjust for around a million statistical tests could result in low power. If that is

the explanation, support for the hypotheses underpinning previous candidate genes might be

obtained by a more systematic analysis of the GWAS data for evidence for over-

representation of smaller p-values than expected by chance (Holmans et al., 2009). Third,

individually rare genetic variants of strong effect might also be missed by GWAS studies

(although these would also go undetected by most prior candidate gene studies).

The overarching purpose of this paper is to compare hypothesis-driven candidate genes for

schizophrenia from SZGene (Allen et al., 2008) with the largest schizophrenia GWAS

published to date (International Schizophrenia Consortium, ISC) (Purcell et al., 2009). First,

we characterized the hypothesis-driven candidate gene studies. Second, we conducted

quantitative comparisons to determine whether the set of hypothesis-driven candidate genes

were either enriched for lower p-values in the ISC results or contained markers with

predictive power for schizophrenia. Finally, we performed a qualitative comparison of the

most studied hypothesis-driven candidate genes with the ISC results.

Method

Hypothesis-driven candidate genes

Candidate genes for schizophrenia were drawn from SZGene (Allen et al., 2008) (courtesy

Dr. Lars Bertram on 11/09/2009). SZGene included studies evaluating associations between

a genetic variant and schizophrenia and published in a peer-reviewed, English language

journal (Allen et al., 2008). Studies were identified via PubMed, bibliographies, and tables

of contents. To ensure that the list was not “contaminated” by the results of GWAS, SZGene

entries from GWAS were removed as were genes studied only subsequent to identification

in a GWAS. As only ISC autosomal results were available, 15 chromosome X genes were

dropped. The list of autosomal hypothesis-driven candidate genes for schizophrenia

contained 732 genes from 1,374 studies (Table S1).

The goal in creating this list was to enumerate genes thought potentially to be etiological for

schizophrenia by researchers in the field. The quality of the individual studies was variable.

However, our interest was not in the study results per se (which can be strongly impacted by

quality) but rather in the choice of a gene.

Samples

The ISC is described elsewhere (International Schizophrenia Consortium, 2008, Purcell et

al., 2009). Briefly, we studied 3,322 European cases with DSM-IV or ICD-10 schizophrenia

and 3,587 controls from seven sites. All work was approved by institutional review boards.

After complete description of the study to the subjects, written informed consent was

obtained. Genotyping was performed on DNA extracted from blood using Affymetrix 5.0 or

6.0 arrays. Genotypes were called using Birdsuite (Korn et al., 2008) and imputation

conducted using Beagle (Browning and Browning, 2009, Browning and Browning, 2007)

against the HapMap3 CEU data resulting in 1,948,385 autosomal SNPs with direct or
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imputed genotypes. The primary analysis was logistic regression of disease state on the

imputed allele dosages with inclusion of covariates to adjust for population stratification

effects. The GAIN study genotyped 1230 SCZ cases and 1136 controls of European ancestry

on the Affymetrix 6.0 array (Shi et al., 2009).

Statistical analysis

We first explored the set of hypothesis-driven candidate genes using a variety of descriptive

approaches (SAS Institute Inc., 2004, 2005). Quanto was used for power calculations

(Gauderman and Morrison, 2006, Gauderman, 2002). We used DAVID (Dennis et al., 2003,

Huang da et al., 2009, Sherman et al., 2007) to characterize hypotheses about the

pathophysiology of schizophrenia reflected in the hypothesis-driven candidate gene list.

DAVID identifies Gene Ontology biological pathways (Harris et al., 2004) with chance-

corrected over-representation a given gene list. To account for overlap between pathways,

we used the annotation cluster feature in DAVID to focus on higher-level clusters of similar

biological processes.

We then compared hypothesis-driven candidate genes for schizophrenia with ISC GWAS

results to assess whether the hypothesis-driven candidate gene list had over-representation of

smaller ISC p-values than expected by chance. These analyses were conducted using

ALIGATOR (Holmans et al., 2009) and InRich (Lee et al., 2011). These programs use

different algorithms to assess whether GWAS findings are over-represented for small p-

values with reference to a pre-defined set of genes (i.e., a pathway). ALIGATOR uses

permutation to account for variable numbers of SNPs per gene, different patterns of linkage

disequilibrium between SNPs (within the same gene), and varying gene sizes. We

considered SZGene hypothesis-driven candidate genes as a “pathway” and used

ALIGATOR to estimate the probability that this list contained an over-representation of

smaller ISC GWAS p-values. The ISC GWAS results were input to ALIGATOR which

assigned these SNPs to UCSC hg18 RefSeq genes (Pruitt et al., 2005). We determined the

significance threshold (generally 0.002–0.004) that designated the top 5% of all genes as

“significant” (Holmans et al., 2009). The key statistical comparison is akin to a 2×2 table of

whether a gene is in the top 5% by whether a gene is a member of a pathway. Assessing

significance is complex due to violation of independence assumptions. ALIGATOR uses a

SNP-based permutation algorithm to create a reference distribution for a pathway. InRich

controls linkage disequilibrium between genes by comparing a gene set of interest to linkage

disequilibrium independent regions. Using the same significance thresholds as in

ALIGATOR, we identified linkage disequilibrium independent significant regions from the

ISC dataset using the clump function within PLINK (r2=0.5 over 1Mb). We then used

InRich to determine if the candidate gene set showed enrichment for these regions.

Polygenic score analysis was conducted as described in the ISC GWAS paper (Purcell et al.,

2009). We used 14,811 SNPs which were genotyped in both the ISC and SCZ GAIN

samples and which mapped to candidate genes. We made a polygenic profile based on the

risk alleles within these SNPs in the ISC data, and used this profile to create a polygenic

score for each individual within the SCZ GAIN sample (an independent target sample). We
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used logistic regression between the score of each individual in SCZ GAIN and their case/

control status.

Results

Characteristics of hypothesis-driven candidate gene studies of schizophrenia

Table 1 describes hypothesis-driven candidate genes from SZGene (Allen et al., 2008).

There were 732 autosomal genes from 1,374 hypothesis-driven candidate gene studies

(Table S1). These genes were studied from 1–81 times. Most genes (563, 76.9%) were

investigated in one (60.9%) or two studies (16.0%). Although replication is critical in human

genetics, there is little capacity to evaluate both false positive and false negative findings.

Two-thirds of genes were assessed by ≤3 markers and a median SNP density of 15.4 kb/

SNP. The median numbers of cases (191) and controls (214) were modest.

We used pathway analysis to characterize the hypotheses that guided candidate gene

selection. The 732 hypothesis-driven candidate genes were entered into DAVID to assess

the Gene Ontology biological processes to which these genes belonged. The top four

annotation clusters consist of biological processes involved in synaptic transmission,

neuronal development and morphogenesis, regulation of synaptic transmission, and response

to chemical stimuli (Tables 1 and S2). The full list reflects a diversity of ideas about

schizophrenia etiology; as expected, cluster enrichment scores were particularly strong for

candidate genes selected under the hypotheses that schizophrenia is a disease of the synapse

and/or a neuro-developmental process.

We next evaluated completeness and coverage for the hypothesis-driven candidate genes.

First, we estimated statistical power to detect association. Even for relatively large studies

(i.e., samples sizes at the 90th percentiles of Ncase=537 and Ncontrol=628) and a liberal

correction for multiple comparisons (α=0.005, 10 markers), power was 48% to detect

genetic effects typical for GWAS of human diseases (median genotypic relative risk=1.28

and median minor allele frequency of 0.29 for disease associations with p<5×10−8)

(Hindorff et al., 2009). Second, we assessed genomic coverage. The 732 hypothesis-driven

candidate genes represent 3.7% of RefSeq autosomal genes (Pruitt et al., 2005). Marker

coverage can be assessed only generally, but included only small proportions of common

genetic variation. Finally, of all genes comprising pathways in the top four DAVID

annotation clusters, only 6.7% had ever been studied. Although these pathways may be

over-inclusive, the main hypotheses guiding selection of hypothesis-driven candidate genes

were evaluated incompletely.

Hypothesis-driven candidate gene studies and the ISC GWAS

The ISC GWAS had 3,322 cases, 3,587 controls, and 1,948,385 genotyped and imputed

autosomal SNPs. The sample size was 1.36 times greater than the largest hypothesis-driven

candidate gene study. Statistical power was 89% to detect a genetic effect corresponding to

that typical for SNPs implicated in human disease GWAS (Hindorff et al., 2009) including

adjustment for multiple comparisons (α=5×10−8). The ISC reported 1,948,385 associations,

which exceeds the total associations in the SZGene database by over 180-fold. The mean
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marker density over the genome was 1 SNP/1.6 kb. In comparison to HapMap (r27, phases I

+II+III), ISC markers assessed 79.0% of known common variants present in individuals of

European ancestry either directly or indirectly with r2 ≥ 0.8.

We next investigated coverage and gene size (using strict gene boundaries, ±0 kb). The 732

hypothesis-driven candidate genes were markedly larger than the remaining 18,891

autosomal RefSeq genes (median 33.5 versus 20.5 kb, Wilcoxon p=4×10−20). Importantly,

ISC SNP densities were similar in hypothesis-driven candidate genes in comparison to all

other autosomal genes (median 1,360 versus 1,379 bases/SNP, Wilcoxon p=0.25). A sizable

fraction of autosomal RefSeq genes had no ISC SNPs within their boundaries (18.7%). As

expected, genes with no SNPs were markedly smaller (median 4.1 versus 28.2 kb, Wilcoxon

p ≈ 0). As the 732 schizophrenia candidate genes were larger, they were significantly less

likely to have no coverage than the remaining RefSeq genes (10.0% versus 19.0%,

p=5×10−11). Although this generation of GWAS chips provides partial genomic coverage of

common variation, hypothesis-driven candidate genes for schizophrenia had better coverage

than other RefSeq genes.

Do the ISC GWAS data support hypothesis-driven candidate genes as significant
contributors to schizophrenia risk?

There were no SNPs within the gene boundaries (±0 kb) for 73 hypothesis-driven candidate

genes and no SNPs within expanded gene boundaries (±10 kb) for 27 genes (Table S3).

Hypothesis-driven candidate genes with no ISC coverage were excluded from enrichment

analyses. Of the ~1.9 million ISC SNPs, 56,981 mapped within hypothesis-driven candidate

genes (±0 kb) and 65,803 mapped within expanded gene boundaries (±10 kb).

We assessed whether hypothesis-driven candidate genes were over-represented for smaller

ISC GWAS p-values using ALIGATOR. The central comparison was whether there was an

over-representation of the top 5% of significant genes in the hypothesis-driven candidate

gene list in comparison to the remaining annotated genes. In Table 2, there was a nominally

significant over-representation of smaller p-values in the ISC data for the full set of

hypothesis-driven candidate genes but these values did not survive multiple testing

correction. In addition, there was no evidence for over-representation of small ISC p-values

in the most studied hypothesis-driven candidate genes (≥3 times, 23.1% of the total).

Pathway analysis can be complex in regions like the MHC that have extensive

disequilibrium between genes (Stenzel et al., 2004). When we repeated the ALIGATOR

analysis after excluding genes in the MHC region, there was no evidence for over-

representation of smaller p-values (p ~ 0.48) indicating that the marginal enrichment was

due to bias. We repeated the pathway analysis using InRich, which may be more robust than

ALIGATOR in regions of high linkage disequilibrium. InRich evaluates regions defined by

linkage disequilibrium. We tested the full candidate gene data set, using the same

significance thresholds as in ALIGATOR, and found no evidence for enrichment of

significant findings in the candidate genes (Table 2). Therefore, the pathway analyses are

consistent with the null hypothesis as all p-values were non-significant or marginal and

would not survive correction for multiple testing and as removal of the MHC region and

Collins et al. Page 6

Psychol Med. Author manuscript; available in PMC 2014 October 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



analysis with a program that corrects for linkage disequilibrium indicates the results are a

false positive resulting from extensive linkage disequilibrium in the MHC region.

In addition, we evaluated whether the list of historical candidate genes, as a whole, were

making a significant contribution to risk of SCZ by evaluating the polygenic score profile.

This approach has provided support for an important polygenic contribution to SCZ (Purcell

et al., 2009). We created a polygenic score profile for SNPs which mapped to historical

candidate genes using the ISC data. We then applied this score to an independent dataset

(SCZ GAIN, N=1230 cases and 1136 controls). Independent SCZ cases did not have greater

risk scores than controls based on these historical candidate genes (p=0.92). Many

hypothesis-driven candidate genes were selected from two over-arching hypotheses,

schizophrenia as a synaptic or neurodevelopmental disorder (Table 1). These hypotheses

have been incompletely assessed. We used pathway analysis of the ISC data to assess these

hypotheses far more completely than has been done previously. The set of 4,808 genes that

comprise the synaptic cluster 1 from DAVID did not show over-representation of lower ISC

p-values (p-value ~1). This list may be over-inclusive and the candidate genes actually

studied might be more refined and appropriate to schizophrenia; however, the subset of 222

cluster 1 genes investigated in a hypothesis-driven candidate gene study did not have over-

representation of smaller ISC p-values (p-value ~1). Similarly, genes in DAVID cluster 2

(neuro-development) did not show enrichment for lower ISC p-values for the full set (4,834

genes) or the subset evaluated in a candidate gene study (401 genes, all p-values non-

significant).

Qualitative comparisons

Pathway analysis considers sets of genes in aggregate. Negative aggregate results could miss

true over-representation of small p-values in a small number of hypothesis-driven candidate

genes. Table 3a depicts the ISC findings for the 10 most-studied hypothesis-driven candidate

genes. There was inadequate coverage for two small genes (DRD4 and APOE), and the

remainder had good SNP densities but weak ISC results with none surviving a liberal gene-

wise Bonferroni correction. Figure S2 depicts these genes and highlights regions of

conspicuous attention in the literature (COMT/val58met, DRD3/ser9gly, DRD2/Taq1A,

HTR2A/T102C, NRG1/HapICE, BDNF/val66met, DTNBP1, and SLC6A4/HTTLPR). The

ISC results do not implicate common genetic variation in these genes. Although the region

containing SLC6A4 shows no signal, the widely-studied promoter polymorphism (HTTLPR)

was not directly genotyped and neighboring SNPs are in low linkage disequilibrium

(Konneker et al., in press).

We also investigated the 35 ISC SNPs with associations < 5×10−8 and all were located from

chr6:31.58–32.77 mb in the MHC region (Purcell et al., 2009). These SNPs map to 10 genes

(Table 3b), five of which had not previously been the subject of a candidate gene study.

Four genes had been studied 1–5 times and one extensively (NOTCH4). The strong caveat

for Table 3b is the extensive linkage disequilibrium in the MHC region (Figure S1); these

genome-wide significant SNPs could reflect one or a few risk variants which may or may

not be a candidate gene.
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Discussion

The major aim of this study was to evaluate the hypothesis-driven candidate gene literature

for schizophrenia with respect to a large GWAS dataset. Hypothesis-driven candidate gene

studies have been a major approach to the molecular etiology of schizophrenia. However,

we now can perform analyses orders of magnitude more detailed than were possible even

five years ago. We wished to determine whether the systematic investigations now allowed

by GWAS supported this body of work in aggregate and the degree to which GWAS

empirical results support the over-arching concepts that influenced candidate gene selection.

We highlight that we did not conduct meta-analyses of the findings of hypothesis-driven

candidate gene studies as this has been done elsewhere (Allen et al., 2008).

We acknowledge the advantages of hindsight. The hypothesis-driven candidate gene

literature, a body of work to which the present authors have contributed, contains numerous

studies that were state-of-the-art when they were done and represent considerable effort by

teams of investigators. GWAS will undoubtedly be subject to similar scrutiny as that done

here for candidate gene studies. Although the ISC is the largest and most comprehensive

schizophrenia GWAS published to date, it still was not ideal. Although statistical power was

high by historical standards, we now know that greater power is desirable to detect the small

genotypic relative risks characteristic of schizophrenia. In addition, coverage was not

necessarily “genome-wide” as some important regions had inadequate genotyping and rare

genetic variation was poorly assessed. With these caveats in mind, a number of observations

of the historical candidate gene literature emerged from our analyses.

First, hypothesis-driven candidate gene studies had poor statistical power by contemporary

standards. Even for a relatively large candidate gene study with power-favorable multiple

comparison correction, power would have been poor to detect the genetic effects typical for

GWAS of human diseases. As the genetic effects for schizophrenia may be smaller than for

other human diseases (Purcell et al., 2009, Shi et al., 2009, Stefansson et al., 2009), nearly

all hypothesis-driven candidate gene studies were under-powered. Given what we now know

about the genetic architecture of schizophrenia, a typical candidate gene study requires

sample sizes ~11,000 cases plus controls for a single marker, 17,500 subjects for 10

markers, and 24,000 subjects for 100 markers (Supplemental Methods). Future association

studies of schizophrenia should use similarly realistic power calculations.

Moreover, we demonstrated that hypothesis-driven candidate gene studies generally had

poor coverage of common genetic variation. With the resources provided by the HapMap

and 1000 Genomes projects coupled with decreases in genotyping costs, researchers can

ensure that future genotyping covers the majority of common and rare variation present in

their samples.

We were surprised to realize that most genes in the hypothesis-driven candidate gene

literature for schizophrenia had been assessed once or twice (76.9%). Given the critical

importance of replication in genetic studies of complex traits (Chanock et al., 2007),

evaluation of false positives and false negatives is not possible. Positive findings from one
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or two studies cannot be viewed as secure (particularly given the distorting potential of

publication bias) and, conversely, negative findings may not provide confident exclusion.

If power and coverage are low, we can anticipate false negatives (i.e., true susceptibility loci

with non-significant candidate gene findings). For example, GWAS and replication efforts

support TCF4 as a risk locus for schizophrenia (Stefansson et al., 2009). However, a TCF4

CAG repeat was studied for association with schizophrenia in three studies (Bowen et al.,

2000, McInnis et al., 2000, Vincent et al., 1999). All reported negative results which may

have lead to the inappropriate exclusion of TCF4 from consideration.

Second, it is possible that the major hypotheses that drove the selection of many candidate

genes are incorrect. SZGene candidate genes were selected for many different reasons and

some resulted from genome-wide linkage screens (most notably NRG1 and DTNBP1)

(Stefansson et al., 2002, Straub et al., 2002). However, the ISC GWAS results did not lend

support for common variation contributing to schizophrenia - either for candidate genes

from the literature as a whole, or for the specific pathways from which candidate genes were

frequently selected. For the full set of hypothesis-driven candidate genes, there was

nominally significant support for an over-representation of small ISC p-values. However,

the effect was marginal, and the results were not significant when corrected for potential

bias caused by linkage disequilibrium between genes. We found no support for an aggregate

effect of hypothesis-driven candidate genes contributing to SCZ risk using a risk profile

generated from the SNPs within these genes. This pattern of results is not consistent with

robust or notable collective contribution of common variation within the hypothesis-driven

candidate genes to schizophrenia based on the ISC data. However, it is possible that subsets

of the heterogeneous list of historical candidate genes are enriched for smaller ISC p-values.

We thus tested the two over-arching, “meta-hypotheses” which have been highly influential

– notions of schizophrenia as a disease of the synapse and as a neuro-developmental disease.

To our knowledge, these two larger-scale ideas have not been tested for empirical support in

aggregate. We found no evidence to support a genetic basis for these two hypotheses in

perhaps the most comprehensive analysis yet conducted. In addition, we specifically

evaluated eight of the ten most studied historical candidate genes and the ISC GWAS results

provide no support for common genetic variation associated with schizophrenia. We note

that the strongest ISC GWAS findings were in the MHC region. Genes from the expanded

MHC region do appear in the hypothesis-driven candidate gene literature. Most notably,

NOTCH4 had genome wide significant SNPs in the ISC data and was highly studied (24

times; both positive and negative studies) in the candidate gene literature. However, given

the high LD in the region (Table S1), we cannot localize the MHC signal more specifically.

We cannot therefore either directly validate or exclude NOTCH4 as involved in

schizophrenia susceptibility.

Finally, more generally, there are now numerous guidelines for candidate gene studies

(Chanock et al., 2007, Pearson and Manolio, 2008). If these guidelines are followed at all

stages of the scientific process (from study design through review), the published literature

will better reflect the genetic architecture of schizophrenia.
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No single study can disprove a meta-hypothesis in psychiatry, and our conclusions are

bounded by the statistical power of the ISC sample. However, it is notable that the ISC

GWAS results do not support enrichment of schizophrenia susceptibility loci within the

candidate genes. These results suggest – but do not prove – that many traditional ideas about

the genetic basis of schizophrenia may be incorrect. Indeed, the singular advantage of

genomic surveys is that they are unbiased by prior knowledge and can yield novel and

unexpected findings. Given current knowledge of the genetic architecture of schizophrenia

and the capacity to assess common and rare variation across the genome, it is possible that

the next few years will lead to marked changes in major hypotheses about the genetic basis

of schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Characteristics of hypothesis-driven candidate gene studies and the ISC GWAS.

Characteristic Candidate gene studies ISC

Studies 1,375 -

Genes (autosomal) 732 -

Markers (autosomal)

 Total 6,934 1,948,385

 Markers per gene, median (IQR) 2 (1–5) 9 (1–34)

 Genes with 1, 2, or 3 markers 65.9% n/a

 Marker density per gene as kb/SNP, median (IQR) 15.4 (4.69–46.2) 1.38 (0.69–2.47)

Sample size Median (range) a Actual

 Total subjects 412 (27–5,623) 6,909

 Number of cases 191 (5–2,434) 3,322

 Number of controls 214 (12–4,899) 3,587

Major annotation clusters from pathway analysis Enrichment score

 Synaptic transmission 52.2 n/a

 Neuronal development and morphogenesis 32.4

 Regulation of synaptic transmission 22.6

 Response to chemical stimuli 22.2

Statistical power b 0.48 0.89

Proportion of autosomal RefSeq genes studied c 0.037 0.902

Proportion of genes in top 4 DAVID annotation clusters studied 0.067 n/a

a
Biased due to subject overlap across publications.

b
See text for assumptions.

c
For ISC, assuming gene boundaries expanded by ±10 kb and SNP density < 20 kb/SNP.

IQR=inter-quartile range. FDR=false discovery rate. GRR=genotypic relative risk. MAF=minor allele frequency.
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Table 2

Testing for over-representation of smaller ISC GWAS p-values in hypothesis-driven candidate genes for

schizophrenia and genes corresponding to major hypotheses.

Gene list Boundary ± 0 kb Boundary ± 10 kb

SZGene hypothesis-driven candidate genes

 Full set of genes 0.05 0.02

 Full set, excluding MHC region 0.48 0.49

 Full set, LD correction (InRich) 0.63 0.19

 Genes studied ≥3 times 0.19 0.45

 Genes studied ≥3 times, excluding MHC region 0.65 0.52

Genes in DAVID cluster 1 (synaptic transmission)

 Full set of 4808 genes 1 1

 Subset of 222 hypothesis-driven candidate genes 0.99 1

Genes in DAVID cluster 2 (neuronal development and morphogenesis)

 Full set of 4834 genes 1 1

 Subset of 401 hypothesis-driven candidate genes 0.73 0.95

Empirical p-values (from ALIGATOR unless otherwise noted) testing for over-representation of smaller ISC GWAS p-values in a given gene list
in comparison to that expected by chance (10,000 permutations). SNPs were mapped to strict (±0 kb) or expanded (±10 kb) gene boundaries. SNP
thresholds to select the top 5% of genes varied from 0.002 – 0.004.
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