679 research outputs found

    Thyroglossal Duct Lipoma: A Case Report and a Systematic Review of the Literature for Its Management

    Get PDF
    Thyroglossal duct (TGD) remnants in the form of cysts or fistulas usually present as midline neck masses and they are removed along with the central body of the hyoid bone (Sistrunk’s procedure). For other pathologies associated with the TGD tract, the latter operation might be not necessary. In the present report, a case of a TGD lipoma is presented and a systematic review of the pertinent literature was performed. We present the case of a 57-year-old woman with a pathologically confirmed TGD lipoma who underwent transcervical excision without resecting the hyoid bone. Recurrence was not observed after six months of follow-up. The literature search revealed only one other case of TGD lipoma and controversies are addressed. TGD lipoma is an exceedingly rare entity whose management might avoid hyoid bone excision

    Semi-empirical model for shear strength of RC interior beam-column joints subjected to cyclic loads

    Get PDF
    This paper proposes an extension to RC interior beam-column joints of a model for the shear strength prediction of exterior joints under seismic actions, already presented in the literature and based, for certain assumptions, on a previous work of Park and Mosalam. The necessary changes, due to the joints\u2019 different physical configurations, only one beam converging in exterior joints and two beams converging in interior ones, are introduced. In the proposed model, on the basis of mechanical considerations, a direct formula for interior joint shear strength accounting for the resisting contributions of three inclined concrete struts and of joint reinforcements, the column horizontal stirrups and intermediate vertical bars, is derived. In comparison to the model for exterior joints, three struts are considered instead of two and the influenced of the upper column axial load on the inclination of the concrete struts is taken into account. The coefficients of the contributions of the struts and reinforcements are calibrated using 69 test data sets available in the literature, selecting only cyclic tests showing joint shear failure. For the validation of the proposed model, the shear strength predictions obtained using the proposed expression are compared with those obtained from Kassem\u2019s model, Wang et al.\u2019s formula and Kim and LaFave\u2019s formula, on a set of 28 specimens. It is also proposed a design formula, whose predictions are compared to those of Eurocode 8 and ACI Code

    Chlorine Dioxide Degradation Issues on Metal and Plastic Water Pipes Tested in Parallel in a Semi-Closed System

    Get PDF
    Chlorine dioxide (ClO2) has been widely used as a disinfectant in drinking water in the past but its effects on water pipes have not been investigated deeply, mainly due to the difficult experimental set-up required to simulate real-life water pipe conditions. In the present paper, four different kinds of water pipes, two based on plastics, namely random polypropylene (PPR) and polyethylene of raised temperature (PERT/aluminum multilayer), and two made of metals, i.e., copper and galvanized steel, were put in a semi-closed system where ClO2 was dosed continuously. The semi-closed system allowed for the simulation of real ClO2 concentrations in common water distribution systems and to simulate the presence of pipes made with different materials from the source of water to the tap. Results show that ClO2 has a deep effect on all the materials tested (plastics and metals) and that severe damage occurs due to its strong oxidizing power in terms of surface chemical modification of metals and progressive cracking of plastics. These phenomena could in turn become an issue for the health and safety of drinking water due to progressive leakage of degraded products in the water

    Pre-operative diagnosis of an unusual complication of abdominal aortic aneurysm on multidetector computed tomography: a case report

    Get PDF
    Spontaneous fistulation of an abdominal aortic aneurysm (AAA) into the inferior vena cava (IVC) is an unusual and infrequently encountered complication in clinical practice. In the majority of cases, it is a diagnosis made on the operating table, during surgical repair of AAA. We report a patient with an aortocaval fistula diagnosed preoperatively on multidetector computed tomography (MDCT). Preoperative diagnosis of this rare complication is important as it allows appropriate anaesthetic and surgical planning thereby reducing morbidity and mortality

    Sub-3mm spatial resolution from a large monolithic LaBr3 (Ce) scintillator

    Get PDF
    Abstract A Compton camera prototype for ion beam range monitoring via prompt (< 1 ns) gamma detection in hadron therapy is being developed and characterized at the Medical Physics Department of LMU Munich. The system consists of a large (50x50x30 mm3) monolithic LaBr3(Ce) scintillation crystal as absorber component to detect the multi-MeV Compton scattered photons, together with a stack of 6 double-sided silicon strip detectors (DSSSD) acting as scatterer component. Key ingredient of the γ-source reconstruction is the determination of the γ-ray interaction position in the scintillator, which is read out by a 256-fold segmented multi-anode photomultiplier tube (PMT). From simulations an angular resolution of about 1.5o for the photon source reconstruction can be expected for the energy range around 3 – 5 MeV, provided that a spatial resolution of 3 mm can be reached in the absorbing scintillator [1]. Therefore, particular effort was dedicated to characterize this latter property as a function of the γ-ray energy. Intense, tightly collimated 137Cs and 60Co photon sources were used for 2D irradiation scans (step size 0.5 mm) as prerequisite for studying the performance of the "k-Nearest-Neighbors" algorithm developed at TU Delft [2] (together with its variant "Categorical Average Pattern", CAP) and extending its applicability into the energy range beyond the original 511 keV. In this paper we present our most recent interaction position analysis in the absorbing scintillator, leading to a considerably improved value for the spatial resolution: systematic studies were performed as a function of the k-NN parameters and the PMT segmentation. A trend of improving spatial resolution with increasing photon energy was confirmed, resulting in the realization of the presently optimum spatial resolution of 2.9(1) mm @1.3 MeV, thus reaching the design specifications of the Compton camera absorber. The specification goal was reached also for a reduced PMT segmentation of 8x8 anode segments (each with 6x6 mm2 active area), thus allowing to reduce the complexity of the signal processing while preserving the performance

    A high accuracy computed water line list

    Full text link
    A computed list of H2_{2}16^{16}O infra-red transition frequencies and intensities is presented. The list, BT2, was produced using a discrete variable representation two-step approach for solving the rotation-vibration nuclear motions. It is the most complete water line list in existence, comprising over 500 million transitions (65% more than any other list) and it is also the most accurate (over 90% of all known experimental energy levels are within 0.3 cm1^{-1} of the BT2 values). Its accuracy has been confirmed by extensive testing against astronomical and laboratory data. The line list has been used to identify individual water lines in a variety of objects including: comets, sunspots, a brown dwarf and the nova-like object V838 Mon. Comparison of the observed intensities with those generated by BT2 enables physical values to be derived for these objects. The line list can also be used to provide an opacity for models of the atmospheres of M-dwarf stars and assign previously unknown water lines in laboratory spectra.Comment: 8 Pages, zero figures. Submitted to MNRAS. On line data at: ftp://cdsarc.u-strasbg.fr/cats/VI/11

    The Long March of Chinese Co-operatives: Towards Market Economy, Participation, and Sustainable Development

    Get PDF
    This is an Author Final Copy of a paper accepted for publication in Asia Pacific Business Review published by and copyright Taylor & Francis

    Interaction of Pelargonium sidoides Compounds with Lactoferrin and SARS-CoV-2: Insights from Molecular Simulations

    Get PDF
    (1) Background: Pelargonium sidoides extracts and lactoferrin are two important natural, anti-inflammatory, and antiviral agents, which can interfere with the early stages of SARS-CoV-2 infection. Molecular docking and molecular dynamics simulation approaches have been applied to check for the occurrence of interactions of the Pelargonium sidoides compounds with lactoferrin and with SARS-CoV-2 components. (2) Methods: Computational methods have been applied to confirm the hypothesis of a direct interaction between PEL compounds and the lactoferrin protein and between Pelargonium sidoides compounds and SARS-CoV-2 Spike, 3CLPro, RdRp proteins, and membrane. Selected high-score complexes were structurally investigated through classical molecular dynamics simulation, while the interaction energies were evaluated using the molecular mechanics energies combined with generalized Born and surface area continuum solvation method. (3) Results: Computational analyses suggested that Pelargonium sidoides extracts can interact with lactoferrin without altering its structural and dynamical properties. Furthermore, Pelargonium sidoides compounds should have the ability to interfere with the Spike glycoprotein, the 3CLPro, and the lipid membrane, probably affecting the functional properties of the proteins inserted in the double layer. (4) Conclusion: Our findings suggest that Pelargonium sidoides may interfere with the mechanism of infection of SARS-CoV-2, especially in the early stages

    FLNC Gene Splice Mutations Cause Dilated\ua0Cardiomyopathy

    Get PDF
    OBJECTIVE: To identify novel dilated cardiomyopathy (DCM) causing genes, and to elucidate the pathological mechanism leading to DCM by utilizing zebrafish as a model organism. BACKGROUND: DCM, a major cause of heart failure, is frequently familial and caused by a genetic defect. However, only 50% of DCM cases can be attributed to a known DCM gene variant, motivating the ongoing search for novel disease genes. METHODS: We performed whole exome sequencing (WES) in two multigenerational Italian families and one US family with arrhythmogenic DCM without skeletal muscle defects, in whom prior genetic testing had been unrevealing. Pathogenic variants were sought by a combination of bioinformatic filtering and cosegregation testing among affected individuals within the families. We performed function assays and generated a zebrafish morpholino knockdown model. RESULTS: A novel filamin C gene splicing variant (FLNC c.7251+1 G>A) was identified by WES in all affected family members in the two Italian families. A separate novel splicing mutation (FLNC c.5669-1delG) was identified in the US family. Western blot analysis of cardiac heart tissue from an affected individual showed decreased FLNC protein, supporting a haploinsufficiency model of pathogenesis. To further analyze this model, a morpholino knockdown of the ortholog filamin Cb in zebrafish was created which resulted in abnormal cardiac function and ultrastructure. CONCLUSIONS: Using WES, we identified two novel FLNC splicing variants as the likely cause of DCM in three families. We provided protein expression and in vivo zebrafish data supporting haploinsufficiency as the pathogenic mechanism leading to DCM
    corecore