175 research outputs found

    Probing Yukawian gravitational potential by numerical simulations. I. Changing N-body codes

    Full text link
    In the weak field limit general relativity reduces, as is well known, to the Newtonian gravitation. Alternative theories of gravity, however, do not necessarily reduce to Newtonian gravitation; some of them, for example, reduce to Yukawa-like potentials instead of the Newtonian potential. Since the Newtonian gravitation is largely used to model with success the structures of the universe, such as for example galaxies and clusters of galaxies, a way to probe and constrain alternative theories, in the weak field limit, is to apply them to model the structures of the universe. In the present study, we consider how to probe Yukawa-like potentials using N-body numerical simulations.Comment: 17 pages, 11 figures. To appear in General Relativity and Gravitatio

    Analysis of Neighbourhoods in Multi-layered Dynamic Social Networks

    Full text link
    Social networks existing among employees, customers or users of various IT systems have become one of the research areas of growing importance. A social network consists of nodes - social entities and edges linking pairs of nodes. In regular, one-layered social networks, two nodes - i.e. people are connected with a single edge whereas in the multi-layered social networks, there may be many links of different types for a pair of nodes. Nowadays data about people and their interactions, which exists in all social media, provides information about many different types of relationships within one network. Analysing this data one can obtain knowledge not only about the structure and characteristics of the network but also gain understanding about semantic of human relations. Are they direct or not? Do people tend to sustain single or multiple relations with a given person? What types of communication is the most important for them? Answers to these and more questions enable us to draw conclusions about semantic of human interactions. Unfortunately, most of the methods used for social network analysis (SNA) may be applied only to one-layered social networks. Thus, some new structural measures for multi-layered social networks are proposed in the paper, in particular: cross-layer clustering coefficient, cross-layer degree centrality and various versions of multi-layered degree centralities. Authors also investigated the dynamics of multi-layered neighbourhood for five different layers within the social network. The evaluation of the presented concepts on the real-world dataset is presented. The measures proposed in the paper may directly be used to various methods for collective classification, in which nodes are assigned to labels according to their structural input features.Comment: 16 pages, International Journal of Computational Intelligence System

    Baseline pathological data of the wedge clam Donax trunculus from the Tyrrhenian Sea (Mediterranean Basin)

    Get PDF
    In recent years, a collapse in Donax trunculus fishing yields has occurred in the Tyrrhenian Sea (Mediterranean Basin). There is little information available on the impact disease may have had on D. trunculus populations. For the first time, a pathological survey was performed on the natural beds of the bivalve on the Campania and Lazio coasts, western Italy. Detected pathogens and related diseases were analysed, and their prevalence and mean intensity values were calculated. Viral particles, Chlamydia-like organisms, ciliates, coccidians, microcells and trematodes were observed. An unknown ciliate was linked to severe inflammatory and necrotic lesions in the digestive gland. Metacercariae of the trematode Postmonorchis sp. were also strongly represented in almost all samples, reaching high levels of infection; however, none of the pathogens described required the World Organisation for Animal Health to be notified. Initial results indicated that further surveys related to environmental data are necessary in order to assess the relevance of these early observations in managing the declining D. trunculus population in the Tyrrhenian Sea.postprin

    A solution for galactic disks with Yukawian gravitational potential

    Get PDF
    We present a new solution for the rotation curves of galactic disks with gravitational potential of the Yukawa type. We follow the technique employed by Toomre in 1963 in the study of galactic disks in the Newtonian theory. This new solution allows an easy comparison between the Newtonian solution and the Yukawian one. Therefore, constraints on the parameters of theories of gravitation can be imposed, which in the weak field limit reduce to Yukawian potentials. We then apply our formulae to the study of rotation curves for a zero-thickness exponential disk and compare it with the Newtonian case studied by Freeman in 1970. As an application of the mathematical tool developed here, we show that in any theory of gravity with a massive graviton (this means a gravitational potential of the Yukawa type), a strong limit can be imposed on the mass (m_g) of this particle. For example, in order to obtain a galactic disk with a scale length of b ~ 10 kpc, we should have a massive graviton of m_g << 10^{-59} g. This result is much more restrictive than those inferred from solar system observations.Comment: 7 pages; 1 eps figure; to appear in General Relativity and Gravitatio

    Potential-density pairs for axisymmetric galaxies: the influence of scalar fields

    Full text link
    We present a formulation for potential-density pairs to describe axisymmetric galaxies in the Newtonian limit of scalar-tensor theories of gravity. The scalar field is described by a modified Helmholtz equation with a source that is coupled to the standard Poisson equation of Newtonian gravity. The net gravitational force is given by two contributions: the standard Newtonian potential plus a term stemming from massive scalar fields. General solutions have been found for axisymmetric systems and the multipole expansion of the Yukawa potential is given. In particular, we have computed potential-density pairs of galactic disks for an exponential profile and their rotation curves.Comment: 8 pages, no figures, corrected version to the one that will appear in Gen. Relativ. Gravit., where a small typo in eq. (13) is presen

    Probing Yukawian Gravitational Potential by Numerical Simulations. II. Elliptical Galaxies

    Full text link
    Since the Newtonian gravitation is largely used to model with success the structures of the universe, such as galaxies and clusters of galaxies, for example, a way to probe and constrain alternative theories, in the weak field limit, is to apply them to model the structures of the universe. We then modified the well known Gadget-2 code to probe alternative theories of gravitation through galactic dynamics. In particular, we modified the Gadget-2 code to probe alternatives theories whose weak field limits have a Yukawa-like gravitational potential. As a first application of this modified Gadget-2 code we simulate the evolution of elliptical galaxies. These simulations show that galactic dynamics can be used to constrain the parameters associated with alternative theories of gravitation.Comment: 6 pages, 5 figures - To appear in General Relativity and Gravitatio

    A machine learning approach to support deep brain stimulation programming

    Get PDF
    Adjusting the stimulation parameters is a challenge in deep brain stimulation (DBS) therapy due to the vast number of different configurations available. As a result, systems based on the visualization of the volume of tissue activated (VTA) produced by a particular stimulation setting have been developed. However, the medical specialist still has to search, by trial and error, for a DBS set-up that generates the desired VTA. Therefore, our goal is developing a DBS parameter tuning strategy for current clinical devices that allows defining a target VTA under biophysically viable constraints. We propose a machine learning approach that allows estimating the DBS parameter values for a given VTA, which comprises two main stages: i) A K-nearest neighbors-based deformation to define a target VTA preserving biophysically viable constraints. ii) A parameter estimation stage that consists of a data projection using metric learning to highlight relevant VTA properties, and a regression/classification algorithm to estimate the DBS parameters that generate the target VTA. Our methodology allows setting a biophysically compliant target VTA and accurately predicts the required configuration of stimulation parameters. Also, the performance of our approach is stable for both isotropic and anisotropic tissue conductivities. Furthermore, the computational time of the trained system is acceptable for real-world implementations

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Guillain-Barré Syndrome Outbreak in Peru 2019 Associated With Campylobacter jejuni Infection

    Get PDF
    OBJECTIVE: To identify the clinical phenotypes and infectious triggers in the 2019 Peruvian Guillain-Barré syndrome (GBS) outbreak. METHODS: We prospectively collected clinical and neurophysiologic data of patients with GBS admitted to a tertiary hospital in Lima, Peru, between May and August 2019. Molecular, immunologic, and microbiological methods were used to identify causative infectious agents. Sera from 41 controls were compared with cases for antibodies to Campylobacter jejuni and gangliosides. Genomic analysis was performed on 4 C jejuni isolates. RESULTS: The 49 included patients had a median age of 44 years (interquartile range [IQR] 30-54 years), and 28 (57%) were male. Thirty-two (65%) had symptoms of a preceding infection: 24 (49%) diarrhea and 13 (27%) upper respiratory tract infection. The median time between infectious to neurologic symptoms was 3 days (IQR 2-9 days). Eighty percent had a pure motor form of GBS, 21 (43%) had the axonal electrophysiologic subtype, and 18% the demyelinating subtype. Evidence of recent C jejuni infection was found in 28/43 (65%). No evidence of recent arbovirus infection was found. Twenty-three cases vs 11 controls (OR 3.3, confidence interval [CI] 95% 1.2-9.2, p < 0.01) had IgM and/or IgA antibodies against C jejuni. Anti-GM1:phosphatidylserine and/or anti-GT1a:GM1 heteromeric complex antibodies were strongly positive in cases (92.9% sensitivity and 68.3% specificity). Genomic analysis showed that the C jejuni strains were closely related and had the Asn51 polymorphism at cstII gene. CONCLUSIONS: Our study indicates that the 2019 Peruvian GBS outbreak was associated with C jejuni infection and that the C jejuni strains linked to GBS circulate widely in different parts of the world
    corecore