2,063 research outputs found

    Receptor Oligomerization in Family B1 of G-Protein-Coupled Receptors: Focus on BRET Investigations and the Link between GPCR Oligomerization and Binding Cooperativity

    Get PDF
    The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30–40% of all drug targets. During the last two decades, GPCR oligomerization has been extensively studied using methods like bioluminescence resonance energy transfer (BRET) and today, receptor–receptor interactions within the GPCR superfamily is a well-established phenomenon. Evidence of the impact of GPCR oligomerization on, e.g., ligand binding, receptor expression, and signal transduction indicates the physiological and pharmacological importance of these receptor interactions. In contrast to the larger and more thoroughly studied GPCR subfamilies A and C, the B1 subfamily is small and comprises only 15 members, including, e.g., the secretin receptor, the glucagon receptor, and the receptors for parathyroid hormone (PTHR1 and PTHR2). The dysregulation of several family B1 receptors is involved in diseases, such as diabetes, chronic inflammation, and osteoporosis which underlines the pathophysiological importance of this GPCR subfamily. In spite of this, investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality in family B1 GPCRs. One example of the functional effects of GPCR oligomerization is the facilitation of allosterism including cooperativity in ligand binding to GPCRs. Here, we review the currently available data on family B1 GPCR homo- and heteromerization, mainly based on BRET investigations. Furthermore, we cover the functional influence of oligomerization on ligand binding as well as the link between oligomerization and binding cooperativity

    Testis: Spermatocytic seminoma

    Get PDF
    Review on Testis: Spermatocytic seminoma, with data on clinics, and the genes involved

    Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs

    Get PDF
    This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCT), with focus on the most common testicular GCT (TGCT). GCT are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic differentiation. TGCT that occur in young men are divided into two main types, seminoma and nonseminoma, both derived from a pre-invasive germ cell neoplasia in situ (GCNIS), which originates from transformed foetal gonocytes. In severely dysgenetic gonads, a GCNIS-resembling lesion is called gonadoblastoma. GCT occur rarely in young children (infantile GCT) in whom the pathogenesis is different (no GCNIS/gonadoblastoma stage) but the histopathological features are similar to the adult GCT. The rare spermatocytic tumour of older men is derived from post-pubertal spermatogonia that clonally expand due to gain-of function mutations in survival-promoting genes (e.g. FGFR3, HRAS), thus this tumour has a different expression profile than GCNIS-derived TGCT. Clinically most informative immunohistochemical markers for GCT, except teratoma, are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related factors, such as placental-like alkaline phosphatase (PLAP), OCT4 (POU5F1), NANOG, AP-2γ (TFAP2C) and LIN28, which are not expressed in normal adult germ cells. Some of these markers can also be used for immunocytochemistry to detect GCNIS or incipient tumours in semen samples. Gene expression in GCT is regulated in part by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation, except nonseminomas. In addition, a recently discovered mechanism of post-genomic gene expression regulation involves small non-coding RNAs, predominantly micro-RNA (miR). Testicular GCT display micro-RNA profiles similar to embryonic stem cells. Targeted miRNA-based blood tests for miR-371-3 and miR-367 clusters are currently under development and hold a great promise for the future. In some patients miR-based tests may be even more sensitive than the classical serum tumour markers, β -chorio-gonadotrophin (β-hCG), α-fetoprotein (AFP) and lactate dehydrogenase (LDH), which are currently used in the clinic. In summary, research advances have provided clinicians with a panel of molecular markers, which allow specific diagnosis of various subtypes of GCT and are very useful for early detection at the precursor stage and for monitoring of patients during the follow-up

    Deletion in the uridine diphosphate glucuronyltransferase 2B17 gene is associated with delayed pubarche in healthy boys

    Get PDF
    Objective: Only a few genetic loci are known to be associated with male pubertal events. The ability of excreting testosterone (T) and other steroids in the urine depends on sulfation and glucuronidation. One of several essential glucuronidases is encoded by the UGT2B17 gene. In a preliminary report, we found that homozygous deletion of UGT2B17 in boys was associated with lower urinary excretion of T. We hypothesized that boys with a lower glucuronidation capacity may have altered androgen action and excretion affecting pubarche, as this represents a T-dependent event. Design, participants and measures: 668 healthy boys (cross-sectional) aged 6.1–21.9 years (COPENHAGEN puberty study conducted from 2005 to 2006) were included. 65 of the boys where followed longitudinally every 6 months. Participants were genotyped for UGT2B17 copy number variation (CNV). Clinical pubertal staging including orchidometry, anthropometry and serum reproductive hormone levels. Results: 59 of the 668 boys (8.8%) presented with a homozygous deletion of UGT2B17 (del/del). These boys experienced pubarche at a mean age of 12.73 years (12.00–13.46) vs 12.40 years (12.11–12.68) in boys heterozygous for deletion of UGT2B17 (del/ins) vs 12.06 years (11.79–12.33) in boys with the wild-type genotype (ins/ins) (P = 0.029, corrected for BMI z-score). The effect accounted for 0.34 years delay per allele (95% CI: 0.03–0.64). A comparable trend was observed for onset of testicular enlargement >3 mL but did not reach significance. Conclusion: CNV of UGT2B17 is a factor contributing to the timing of male pubarche

    Discourses on Fantasy: A Narrative Allegory

    Get PDF
    This project, though officially designated by the English Department as a creative thesis, is really a hybrid work that combines creative writing with literary criticism. The work is structured as a dream vision, a literary genre popular in the Middle Ages in which a narrator receives some form of instruction or wisdom through an allegorical dream. Examples include The Pearl, The Romance of the Rose, and Chaucer\u27s House of Fame. In this thesis, the allegorical space of the dream vision provides a platform for a series of essays structured as dialogues. These dialogues explore the aesthetics and politics of modern fantasy and supernatural literature, focusing particularly on the opposition of this literature, which often draws on ancient and medieval source material, to modern capitalist society. The discourses themselves are not strictly critical, but incorporate subjectivity, metaphor, and symbolism in their investigation of cultural texts

    Association of polymorphisms in genes encoding hormone receptors ESR1, ESR2 and LHCGR with the risk and clinical features of testicular germ cell cancer.

    Get PDF
    Testicular germ cell cancer (TGCC) is the most common malignancy in young men. Genetic variants known to be associated with risk of TGCC only partially account for the observed familial risks. We aimed to identify additional polymorphisms associated with risk as well as histological and clinical features of TGCC in 367 patients and 214 controls. Polymorphisms in ESR2 (rs1256063; OR=0.53, 95% CI: 0.35-0.79) and LHCGR (rs4597581; OR=0.68, 95% CI: 0.51-0.89, and rs4953617; OR=1.88, 95% CI: 1.21-2.94) associated with risk of TGCC. Polymorphisms in ESR1 (rs9397080; OR=1.85, 95% CI: 1.18-2.91) and LHCGR (rs7371084; OR=2.37, 95% CI: 1.26-4.49) associated with risk of seminoma and metastasis, respectively. SNPs in ESR1 (rs9397080) and LHCGR (rs7371084) were predictors of higher LH levels and higher androgen sensitivity index in healthy subjects. The results suggest that polymorphisms in ESR1, ESR2 and LHCGR contribute to the risk of developing TGCC, histological subtype, and risk to metastasis

    Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain

    Get PDF
    Glucose homeostasis and growth essentially depend on the hormone insulin engaging its receptor. Despite biochemical and structural advances, a fundamental contradiction has persisted in the current understanding of insulin ligand-receptor interactions. While biochemistry predicts two distinct insulin binding sites, 1 and 2, recent structural analyses have resolved only site 1. Using a combined approach of cryo-EM and atomistic molecular dynamics simulation, we present the structure of the entire dimeric insulin receptor ectodomain saturated with four insulin molecules. Complementing the previously described insulin-site 1 interaction, we present the first view of insulin bound to the discrete insulin receptor site 2. Insulin binding stabilizes the receptor ectodomain in a T-shaped conformation wherein the membrane-proximal domains converge and contact each other. These findings expand the current models of insulin binding to its receptor and of its regulation. In summary, we provide the structural basis for a comprehensive description of ligand-receptor interactions that ultimately will inform new approaches to structure-based drug design.Peer reviewe

    Harmonic oscillator model of the insulin and IGF1 receptors' allosteric binding and activation

    Get PDF
    The insulin and insulin-like growth factor 1 receptors activate overlapping signalling pathways that are critical for growth, metabolism, survival and longevity. Their mechanism of ligand binding and activation displays complex allosteric properties, which no mathematical model has been able to account for. Modelling these receptors' binding and activation in terms of interactions between the molecular components is problematical due to many unknown biochemical and structural details. Moreover, substantial combinatorial complexity originating from multivalent ligand binding further complicates the problem. On the basis of the available structural and biochemical information, we develop a physically plausible model of the receptor binding and activation, which is based on the concept of a harmonic oscillator. Modelling a network of interactions among all possible receptor intermediaries arising in the context of the model (35, for the insulin receptor) accurately reproduces for the first time all the kinetic properties of the receptor, and provides unique and robust estimates of the kinetic parameters. The harmonic oscillator model may be adaptable for many other dimeric/dimerizing receptor tyrosine kinases, cytokine receptors and G-protein-coupled receptors where ligand crosslinking occurs
    corecore