136 research outputs found

    Aldehyde dehydrogenase-1a1 induces oncogene suppressor genes in B cell populations

    Get PDF
    AbstractThe deregulation of B cell differentiation has been shown to contribute to autoimmune disorders, hematological cancers, and aging. We provide evidence that the retinoic acid-producing enzyme aldehyde dehydrogenase 1a1 (Aldh1a1) is an oncogene suppressor in specific splenic IgG1+/CD19− and IgG1+/CD19+ B cell populations. Aldh1a1 regulated transcription factors during B cell differentiation in a sequential manner: 1) retinoic acid receptor alpha (Rara) in IgG1+/CD19− and 2) zinc finger protein Zfp423 and peroxisome proliferator-activated receptor gamma (Pparg) in IgG1+/CD19+ splenocytes. In Aldh1a1−/− mice, splenic IgG1+/CD19− and IgG1+/CD19+ B cells acquired expression of proto-oncogenic genes c-Fos, c-Jun, and Hoxa10 that resulted in splenomegaly. Human multiple myeloma B cell lines also lack Aldh1a1 expression; however, ectopic Aldh1a1 expression rescued Rara and Znf423 expressions in these cells. Our data highlight a mechanism by which an enzyme involved in vitamin A metabolism can improve B cell resistance to oncogenesis

    An Equation of State of a Carbon-Fibre Epoxy Composite under Shock Loading

    Full text link
    An anisotropic equation of state (EOS) is proposed for the accurate extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic) states to other thermodynamic (anisotropic and isotropic) states for a shocked carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a generalised decomposition of a stress tensor [Int. J. Plasticity \textbf{24}, 140 (2008)], represents a mathematical and physical generalisation of the Mie-Gr\"{u}neisen EOS for isotropic material and reduces to this equation in the limit of isotropy. Although a linear relation between the generalised anisotropic bulk shock velocity UsAU^{A}_{s} and particle velocity upu_{p} was adequate in the through-thickness orientation, damage softening process produces discontinuities both in value and slope in the UsAU^{A}_{s}-upu_{p} relation. Therefore, the two-wave structure (non-linear anisotropic and isotropic elastic waves) that accompanies damage softening process was proposed for describing CFC behaviour under shock loading. The linear relationship UsAU^{A}_{s}-upu_{p} over the range of measurements corresponding to non-linear anisotropic elastic wave shows a value of c0Ac^{A}_{0} (the intercept of the UsAU^{A}_{s}-upu_{p} curve) that is in the range between first and second generalised anisotropic bulk speed of sound [Eur. Phys. J. B \textbf{64}, 159 (2008)]. An analytical calculation showed that Hugoniot Stress Levels (HELs) in different directions for a CFC composite subject to the two-wave structure (non-linear anisotropic elastic and isotropic elastic waves) agree with experimental measurements at low and at high shock intensities. The results are presented, discussed and future studies are outlined.Comment: 12 pages, 9 figure

    A limit model for thermoelectric equations

    Full text link
    We analyze the asymptotic behavior corresponding to the arbitrary high conductivity of the heat in the thermoelectric devices. This work deals with a steady-state multidimensional thermistor problem, considering the Joule effect and both spatial and temperature dependent transport coefficients under some real boundary conditions in accordance with the Seebeck-Peltier-Thomson cross-effects. Our first purpose is that the existence of a weak solution holds true under minimal assumptions on the data, as in particular nonsmooth domains. Two existence results are studied under different assumptions on the electrical conductivity. Their proofs are based on a fixed point argument, compactness methods, and existence and regularity theory for elliptic scalar equations. The second purpose is to show the existence of a limit model illustrating the asymptotic situation.Comment: 20 page

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses

    Get PDF
    The sidereal time dependence of MiniBooNE electron neutrino and anti-electron neutrino appearance data are analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino and anti-electron neutrino appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the electron neutrino appearance data prefer a sidereal time-independent solution, and the anti-electron neutrino appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10E-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for muon neutrino to electron neutrino and anti-muon neutrino to anti-electron neutrino oscillations. The fit values and limits of combinations of SME coefficients are provided.Comment: 14 pages, 3 figures, and 2 tables, submitted to Physics Letters

    Shear Localization in Dynamic Deformation: Microstructural Evolution

    Full text link
    corecore