10,146 research outputs found

    The Economic Rationale for Agricultural Regeneration and Rural Infrastructure Investment in South Africa

    Get PDF
    This paper informs government policy insofar as it relates to the agricultural and rural de- velopment sectors and infrastructure investment within these sectors. The paper first quantfies the role of agriculture in the South African economy. This is done within the context of, inter alia, food security, agriculture's contribution to gross domestic product (GDP), economic link- ages and multipliers with respect to the agricultural sector, as well as agriculture's employment creation and external stabilisation capacity. Investment in the agricultural and rural sectors are then analysed with a view of supporting the argument that agriculture's role in the economy is su¢ ciently important to warrant regenerative strategies, including renewed emphasis on agricul- tural and rural infrastructure investment by South African policy makers. The quantification of the agricultural sector in relation to the total economy and that of agricultural and rural infrastructure investment are investigated against the backdrop of declining government sup- port, increasing production risks due to a variety of exogenous events like climate change, and increasing dynamic trade impacts. In this paper, the authors offer both supporting arguments in terms of current economic policy and recommendations for more decisive policy measures aimed at agricultural regeneration and rural infrastructure investment.

    Off-target and tumor-specific accumulation of monocytes, macrophages and myeloid-derived suppressor cells after systemic injection

    Get PDF
    Solid tumors frequently coexist with a degree of local chronic inflammation. Recruited myeloid cells can therefore be considered as interesting vehicles for tumor-targeted delivery of therapeutic agents. Using in vivo imaging, the short-term accumulation of systemically injected monocytes, macrophages and myeloid-derived suppressor cells (MDSCs) was compared in mice bearing fat pad mammary carcinomas. Monocytes and macrophages demonstrated almost identical in vivo and ex vivo distribution patterns with maximal tumor-associated accumulation seen 48 hours after injection that remained stable over the 4-day follow-up period. However, a substantial accumulation of both cell types was also seen in the liver, spleen and lungs albeit decreasing over time in all three locations. The MDSCs exhibited a similar distribution pattern as the monocytes and macrophages, but demonstrated a better relative on-target fraction over time. Overall, our findings highlight off-target cell accumulation as a major obstacle in the use of myeloid cells as vehicles for therapeutic tumor-targeted agents and indicate that their short-term on-target accumulation is mainly of nonspecific nature

    Direct modulation of widely tunable twin-guide lasers

    Get PDF

    Modelling of a dynamic multiphase flash: the positive flash. Application to the calculation of ternary diagrams

    Get PDF
    A general and polyvalent model for the dynamic simulation of a vapor, liquid, liquid-liquid, vapor-liquid or vapor-liquid-liquid stage is proposed. This model is based on the -method introduced as a minimization problem by Han & Rangaiah (1998) for steady-state simulation. They suggested modifying the mole fraction summation such that the same set of governing equations becomes valid for all phase regions. Thanks to judicious additional switch equations, the -formulation is extended to dynamic simulation and the minimization problem is transformed into a set of differential algebraic equations (DAE). Validation of the model consists in testing its capacity to overcome phase number changes and to be able to solve several problems with the same set of equations: calculation of heterogeneous residue curves, azeotropic points and distillation boundaries in ternary diagrams

    Entanglement sudden birth of two trapped ions interacting with a time-dependent laser field

    Full text link
    We explore and develop the mathematics of the two multi-level ions. In particular, we describe some new features of quantum entanglement in two three-level trapped ions confined in a one-dimensional harmonic potential, allowing the instantaneous position of the center-of-mass motion of the ions to be explicitly time-dependent. By solving the exact dynamics of the system, we show how survivability of the quantum entanglement is determined by a specific choice of the initial state settings.Comment: 13 pages, 4 figure

    Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase

    Get PDF
    Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al

    Altering the properties of graphene on Cu(111) by intercalation of potassium bromide

    Get PDF
    The catalytic growth on transition metal surfaces provides a clean and controllable route to obtain defect-free, monocrystalline graphene. However, graphene's optical and electronic properties are diminished by the interaction with the metal substrate. One way to overcome this obstacle is the intercalation of atoms and molecules decoupling the graphene and restoring its electronic structure. We applied noncontact atomic force microscopy to study the structural and electric properties of graphene on clean Cu(111) and after the adsorption of KBr or NaCl. By means of Kelvin probe force microscopy, a change in graphene's work function has been observed after the deposition of KBr, indicating a changed graphene-substrate interaction. Further measurements of single-electron charging events as well as X-ray photoelectron spectroscopy confirmed an electronic decoupling of the graphene islands by KBr intercalation. The results have been compared with density functional theory calculations, supporting our experimental findings
    • …
    corecore