61 research outputs found

    CXCR7 Protein Expression in Human Adult Brain and Differentiated Neurons

    Get PDF
    Background: CXCR7 and CXCR4 are receptors for the chemokine CXCL12, which is involved in essential functions of the immune and nervous systems. Although CXCR7 transcripts are widely expressed throughout the central nervous system, little is known about its protein distribution and function in the adult brain. To evaluate its potential involvement in CXCL12/CXCR4 signaling in differentiated neurons, we studied CXCR7 protein expression in human brain and cultured neurons. Methodology/Principal Findings: Immunohistochemistry and RT-PCR analyses of cortex and hippocampus from control and HIV-positive subjects provided the first evidence of CXCR7 protein expression in human adult neurons, under normal and pathological conditions. Furthermore, confocal microscopy and binding assays in cultured neurons show that CXCR7 protein is mainly located into cytoplasm, while little to no protein expression is found on neuronal plasma membrane. Interestingly, specific CXCR7 ligands that inhibit CXCL12 binding to CXCR7 do not alter CXCR4-activated survival signaling (pERK/pAkt) in rat cortical neurons. Neuronal CXCR7 co-localizes to some extent with the endoplasmic reticulum marker ERp29, but not with early/late endosome markers. Additionally, large areas of overlap are detected in the intracellular pattern of CXCR7 and CXCR4 expression. Conclusions/Significance: Overall, these results implicate CXCR4 as the main CXCL12 signaling receptor on the surface o

    Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain

    Get PDF
    Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of ch

    Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    Get PDF
    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
    corecore