250 research outputs found

    Three-dimensional diffraction mapping by tuning the X-ray energy

    Get PDF
    Three-dimensional reciprocal-space maps of a single SiGe island around the Si(004) Bragg peak are recorded using an energy-tuning technique with a microfocused X-ray beam with compound refractive lenses as focusing optics

    Assessment of Heat-Related Health Impacts in Brisbane, Australia: Comparison of Different Heatwave Definitions

    Get PDF
    Background: There is no global definition of a heatwave because local acclimatisation and adaptation influence the impact of extreme heat. Even at a local level there can be multiple heatwave definitions, based on varying temperature levels or time periods. We investigated the relationship between heatwaves and health outcomes using ten different heatwave definitions in Brisbane, Australia. ---------- Methodology/Principal Findings: We used daily data on climate, air pollution, and emergency hospital admissions in Brisbane between January 1996 and December 2005; and mortality between January 1996 and November 2004. Case-crossover analyses were used to assess the relationship between each of the ten heatwave definitions and health outcomes. During heatwaves there was a statistically significant increase in emergency hospital admissions for all ten definitions, with odds ratios ranging from 1.03 to 1.18. A statistically significant increase in the odds ratios of mortality was also found for eight definitions. The size of the heat-related impact varied between definitions.---------- Conclusions/Significance Even a small change in the heatwave definition had an appreciable effect on the estimated health impact. It is important to identify an appropriate definition of heatwave locally and to understand its health effects in order to develop appropriate public health intervention strategies to prevent and mitigate the impact of heatwaves

    The human epidermal growth factor receptor (EGFR) gene in European patients with advanced colorectal cancer harbors infrequent mutations in its tyrosine kinase domain

    Get PDF
    ABSTRACT: BACKGROUND: The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptors, is a transmembrane tyrosine kinase (TK) activated by the binding of extracellular ligands of the EGF-family and involved in triggering the MAPK signaling pathway, which leads to cell proliferation. Mutations in the EGFR tyrosine kinase domain are frequent in non-small-cell lung cancer (NSCLC). However, to date, only very few, mainly non-European, studies have reported rare EGFR mutations in colorectal cancer (CRC). METHODS: We screened 236 clinical tumor samples from European patients with advanced CRC by direct DNA sequencing to detect potential, as yet unknown mutations, in the EGFR gene exons 18 to 21, mainly covering the EGFR TK catalytic domain. RESULTS: EGFR sequences showed somatic missense mutations in exons 18 and 20 at a frequency of 2.1% and 0.4% respectively. Somatic SNPs were also found in exons 20 and 21 at a frequency of about 3.1% and 0.4% respectively. Of these mutations, four have not yet been described elsewhere. CONCLUSIONS: These mutation frequencies are higher than in a similarly sized population characterized by Barber and colleagues, but still too low to account for a major role played by the EGFR gene in CRC.Peer reviewe

    Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours

    Get PDF
    Background: The human death-associated protein 3 (hDAP3) is a GTP-binding constituent of the small subunit of the mitochondrial ribosome with a pro-apoptotic function.Methods: A search through publicly available microarray data sets showed 337 genes potentially coregulated with the DAP3 gene. The promoter sequences of these 337 genes and 70 out of 85 mitochondrial ribosome genes were analysed in silico with the DAP3 gene promoter sequence. The mitochondrial role of DAP3 was also investigated in the thyroid tumours presenting various mitochondrial contents. Results: The study revealed nine transcription factors presenting enriched motifs for these gene promoters, five of which are implicated in cellular growth (ELK1, ELK4, RUNX1, HOX11-CTF1, TAL1-ternary complex factor 3) and four in mitochondrial biogenesis (nuclear respiratory factor-1 (NRF-1), GABPA, PPARG-RXRA and estrogen-related receptor alpha (ESRRA)). An independent microarray data set showed the overexpression of ELK1, RUNX1 and ESRRA in the thyroid oncocytic tumours. Exploring the thyroid tumours, we found that DAP3 mRNA and protein expression is upregulated in tumours presenting a mitochondrial biogenesis compared with the normal tissue. ELK1 and ESRRA were also showed upregulated with DAP3. Conclusion: ELK1 and ESRRA may be considered as potential regulators of the DAP3 gene expression. DAP3 may participate in mitochondrial maintenance and play a role in the balance between mitochondrial homoeostasis and tumourigenesis

    The antiproton decelerator: AD

    Get PDF
    A simplified scheme for the provision of antiprotons at 100 MeV/c based on fast extraction is described. The scheme uses the existing production target area and the modified Antiproton Collector Ring in their current location. The physics programme is largely based on capturing and storing antiprotons in Penning traps for the production and spectroscopy of antihydrogen. The machine modifications necessary to deliver batches of 1 107 /min at 100 MeV/c are described. Details of the machine layout and the experimental area in the existing AAC Hall are given

    Limitations in a frataxin knockdown cell model for Friedreich ataxia in a high-throughput drug screen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacological high-throughput screening (HTS) represents a powerful strategy for drug discovery in genetic diseases, particularly when the full spectrum of pathological dysfunctions remains unclear, such as in Friedreich ataxia (FRDA). FRDA, the most common recessive ataxia, results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur cluster (ISC) proteins activity, due to a partial loss of frataxin function, a mitochondrial protein proposed to function as an iron-chaperone for ISC biosynthesis. In the absence of measurable catalytic function for frataxin, a cell-based assay is required for HTS assay.</p> <p>Methods</p> <p>Using a targeted ribozyme strategy in murine fibroblasts, we have developed a cellular model with strongly reduced levels of frataxin. We have used this model to screen the Prestwick Chemical Library, a collection of one thousand off-patent drugs, for potential molecules for FRDA.</p> <p>Results</p> <p>The frataxin deficient cell lines exhibit a proliferation defect, associated with an ISC enzyme deficit. Using the growth defect as end-point criteria, we screened the Prestwick Chemical Library. However no molecule presented a significant and reproducible effect on the proliferation rate of frataxin deficient cells. Moreover over numerous passages, the antisense ribozyme fibroblast cell lines revealed an increase in frataxin residual level associated with the normalization of ISC enzyme activities. However, the ribozyme cell lines and FRDA patient cells presented an increase in Mthfd2 transcript, a mitochondrial enzyme that was previously shown to be upregulated at very early stages of the pathogenesis in the cardiac mouse model.</p> <p>Conclusion</p> <p>Although no active hit has been identified, the present study demonstrates the feasibility of using a cell-based approach to HTS for FRDA. Furthermore, it highlights the difficulty in the development of a stable frataxin-deficient cell model, an essential condition for productive HTS in the future.</p

    Myosin Regulatory Light Chain (RLC) Phosphorylation Change as a Modulator of Cardiac Muscle Contraction in Disease

    Get PDF
    Author’s Choice—Final version full access.Understanding how cardiac myosin regulatory light chain (RLC) phosphorylation alters cardiac muscle mechanics is important because it is often altered in cardiac disease. The effect this protein phosphorylation has on muscle mechanics during a physiological range of shortening velocities, during which the heart generates power and performs work, has not been addressed. We have expressed and phosphorylated recombinant Rattus norvegicus left ventricular RLC. In vitro we have phosphorylated these recombinant species with cardiac myosin light chain kinase and zipper-interacting protein kinase. We compare rat permeabilized cardiac trabeculae, which have undergone exchange with differently phosphorylated RLC species. We were able to enrich trabecular RLC phosphorylation by 40% compared with controls and, in a separate series, lower RLC phosphorylation to 60% of control values. Compared with the trabeculae with a low level of RLC phosphorylation, RLC phosphorylation enrichment increased isometric force by more than 3-fold and peak power output by more than 7-fold and approximately doubled both maximum shortening speed and the shortening velocity that generated peak power. We augmented these measurements by observing increased RLC phosphorylation of human and rat HF samples from endocardial left ventricular homogenate. These results demonstrate the importance of increased RLC phosphorylation in the up-regulation of myocardial performance and suggest that reduced RLC phosphorylation is a key aspect of impaired contractile function in the diseased myocardium.National Institutes of Health, NHLBI Grant HL004232 12; Wellcome Trust Grants 091460/Z/10/Z, 092852/Z/10/Z, 092852/Z/10/Z; Biotechnology and Biological Sciences Research Council Grant BB/I019448/1; The British Heart Foundation
    corecore