8,664 research outputs found

    PUBLIC PERCEPTIONS OF AGRICULTURAL BIOTECHNOLOGY: A SURVEY OF NEW JERSEY RESIDENTS

    Get PDF
    Biotechnology is expected to produce significant economic and environmental benefits as a result of the development of new varieties of plants and animals and improved agricultural productivity. Seen by many as a key technology for the 21st century, and as an economic stimulus for the State of New Jersey and for the Nation, biotechnology has been the subject of intense scientific and public debate. Yet, while experts and activists continue to argue, genetic engineering techniques are already leading to agricultural products that may soon be on supermarket shelves.Research and Development/Tech Change/Emerging Technologies,

    The Production Rate and Employment of Ph.D. Astronomers

    Full text link
    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.Comment: 5 pages, 4 figures, 2 tables, PASP accepte

    White Dwarf Asteroseismology and the ^12C(alpha,gamma)^16O Rate

    Full text link
    Due to a new global analysis method, it is now possible to measure the internal composition of pulsating white dwarf stars, even with relatively simple theoretical models. The precise internal mixture of carbon and oxygen is the largest single source of uncertainty in ages derived from white dwarf cosmochronometry, and contains information about the rate of the astrophysically important, but experimentally uncertain, ^12C(alpha,gamma)^16O nuclear reaction. Recent determinations of the internal composition and structure of two helium-atmosphere variable (DBV) white dwarf stars, GD 358 and CBS 114, initially led to conflicting implied rates for the ^12C(alpha,gamma)^16O reaction. If both stars were formed through single-star evolution, then the initial analyses of their pulsation frequencies must have differed in some systematic way. I present improved fits to the two sets of pulsation data, resolving the tension between the initial results and leading to a value for the ^12C(alpha,gamma)^16O reaction rate that is consistent with recent laboratory measurements.Comment: 4 pages, 2 figures, 1 table, uses emulateapj5.sty; Accepted for publication in ApJ Letter

    Inadequate food intake at high temperatures is related to depressed mitochondrial respiratory capacity

    Get PDF
    Animals, especially ectotherms, are highly sensitive to the temperature of their surrounding environment. Extremely high temperature, for example, induces a decline of average performance of conspecifics within a population, but individual heterogeneity in the ability to cope with elevating temperatures has rarely been studied. In this study, we examined inter-individual variation in feeding ability and consequent growth rate of juvenile brown trout Salmo trutta acclimated to a high temperature (19°C), and investigated the relationship between these metrics of whole-animal performances and among-individual variation in mitochondrial respiration capacity. Food was provided ad libitum yet intake varied ten-fold amongst individuals, resulting in some fish losing weight whilst others continued to grow. Almost half of the variation in food intake was related to variability in mitochondrial capacity: low intake (and hence growth failure) was associated with high leak respiration rates within liver and muscle mitochondria, and a lower coupling of muscle mitochondria. These observations, combined with the inability of fish with low food consumption to increase their intake despite ad libitum food levels, suggest a possible insufficient capacity of the mitochondria for maintaining ATP homeostasis. Individual variation in thermal performance is likely to confer variation in the upper limit of an organism's thermal niche and in turn affect the structure of wild populations in warming environments

    An asteroseismic test of diffusion theory in white dwarfs

    Full text link
    The helium-atmosphere (DB) white dwarfs are commonly thought to be the descendants of the hotter PG1159 stars, which initially have uniform He/C/O atmospheres. In this evolutionary scenario, diffusion builds a pure He surface layer which gradually thickens as the star cools. In the temperature range of the pulsating DB white dwarfs (T_eff ~ 25,000 K) this transformation is still taking place, allowing asteroseismic tests of the theory. We have obtained dual-site observations of the pulsating DB star CBS114, to complement existing observations of the slightly cooler star GD358. We recover the 7 independent pulsation modes that were previously known, and we discover 4 new ones to provide additional constraints on the models. We perform objective global fitting of our updated double-layered envelope models to both sets of observations, leading to determinations of the envelope masses and pure He surface layers that qualitatively agree with the expectations of diffusion theory. These results provide new asteroseismic evidence supporting one of the central assumptions of spectral evolution theory, linking the DB white dwarfs to PG1159 stars.Comment: 7 pages, 3 figures, 3 tables, accepted for publication in A&

    Passive Evolution: Are the Faint Blue Galaxy Counts Produced by a Population of Eternally Young Galaxies?

    Get PDF
    A constant age population of blue galaxies, postulated in the model of Gronwall & Koo (1995), seems to provide an attractive explanation of the excess of very blue galaxies in the deep galaxy counts. Such a population may be generated by a set of galaxies with cycling star formation rates, or at the other extreme, be maintained by the continual formation of new galaxies which fade after they reach the age specified in the Gronwall and Koo model. For both of these hypotheses, we have calculated the luminosity functions including the respective selection criteria, the redshift distributions, and the number counts in the B_J and K bands. We find a substantial excess in the number of galaxies at low redshift (0 < z < 0.05) over that observed in the CFH redshift survey (Lilly et al. 1995) and at the faint end of the Las Campanas luminosity function (Lin et al. 1996). Passive or mild evolution fails to account for the deep galaxy counts because of the implications for low redshift determinations of the I-selected redshift distribution and the r-selected luminosity function in samples where the faded counterparts of the star-forming galaxies would be detectable.Comment: 11 pages, LaTeX type (aaspp4.sty), 3 Postscript figures, submitted to ApJ Letter

    Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish

    Get PDF
    In zebrafish, many nerve pathways in both the CNS and periphery are pioneered by a small and relatively simple set of ‘primary’ neurons that arise in the early embryo. We now have used monoclonal antibodies to show that, as they develop, primary neurons of several functional classes express on their surfaces the L2/HNK-1 tetrasaccharide that is associated with a variety of cell surface adhesion molecules. We have studied the early labeling patterns of these neurons, as well as some non-neural cells, and found that the time of onset and intensity of immunolabeling vary specifically according to cell type. The first neuronal expression is by Rohon-Beard and trigeminal ganglion neurons, both of which are primary sensory neurons that mediate touch sensitivity. These cells express the epitope very strongly on their growth cones and axons, permitting study of their development unobscured by labeling in other cells. Both types initiate axogenesis at the same early time, and appear to be the first neurons in the embryo to do so. Their peripheral neurites display similar branching patterns and have similar distinctive growth cone morphologies. Their central axons grow at the same rate along the same longitudinal fiber pathway, but in opposite directions, and where they meet they appear to fasciculate with one another. The similarities suggest that Rohon-Beard and trigeminal ganglion neurons, despite their different positions, share a common program of early development. Immunolabeling is also specifically present on a region of the brain surface where the newly arriving trigeminal sensory axons will enter the brain. Further, the trigeminal expression of the antigen persists in growth cones during the time that they contact an individually identified central target neuron, the Mauthner cell, which also expresses the epitope. These findings provide descriptive evidence for possible roles of L2/HNK-1 immunoreactive molecules in axonal growth and synaptogenesis

    Differential effects of food availability on minimum and maximum rates of metabolism

    Get PDF
    Metabolic rates reflect the energetic cost of living but exhibit remarkable variation among conspecifics, partly as a result of the constraints imposed by environmental conditions. Metabolic rates are sensitive to changes in temperature and oxygen availability, but effects of food availability, particularly on maximum metabolic rates, are not well understood. Here, we show in brown trout (Salmo trutta) that maximum metabolic rates are immutable but minimum metabolic rates increase as a positive function of food availability. As a result, aerobic scope (i.e. the capacity to elevate metabolism above baseline requirements) declines as food availability increases. These differential changes in metabolic rates likely have important consequences for how organisms partition available metabolic power to different functions under the constraints imposed by food availability

    Measuring ^{12}C(&alpha,&gamma)^{16}O from White Dwarf Asteroseismology

    Full text link
    During helium burning in the core of a red giant, the relative rates of the 3&alpha and ^{12}C(&alpha,&gamma)^{16}O reactions largely determine the final ratio of carbon to oxygen in the resulting white dwarf star. The uncertainty in the 3&alpha reaction at stellar energies due to the extrapolation from high-energy laboratory measurements is relatively small, but this is not the case for the ^{12}C(&alpha,&gamma)^{16}O reaction. Recent advances in the analysis of asteroseismological data on pulsating white dwarf stars now make it possible to obtain precise measurements of the central ratio of carbon to oxygen, providing a more direct way to measure the ^{12}C(&alpha,&gamma)^{16}O reaction rate at stellar energies. We assess the systematic uncertainties of this approach and quantify small shifts in the measured central oxygen abundance originating from the observations and from model settings that are kept fixed during the optimization. Using new calculations of white dwarf internal chemical profiles, we find a rate for the ^{12}C(&alpha,&gamma)^{16}O reaction that is significantly higher than most published values. The accuracy of this method may improve as we modify some of the details of our description of white dwarf interiors that were not accessible through previous model-fitting methods.Comment: 8 pages, 4 figures, 3 tables, uses emulateapj5.sty, Accepted for publication in the Astrophysical Journa
    corecore