168 research outputs found

    Reassessment of an Innovative Insulin Analogue Excludes Protracted Action yet Highlights Distinction between External and Internal Diselenide Bridges

    Get PDF
    Long-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U). Relative to wild type (WT), Se-insulin[C7UA , C7UB ] was reported to be protected from proteolysis by insulin-degrading enzyme (IDE), predicting prolonged activity. Because of this strategy's novelty and potential clinical importance, we sought to validate these findings and test their therapeutic utility in an animal model of diabetes mellitus. Surprisingly, the analogue did not exhibit enhanced stability, and its susceptibility to cleavage by either IDE or a canonical serine protease (glutamyl endopeptidase Glu-C) was similar to WT. Moreover, the analogue's pharmacodynamic profile in rats was not prolonged relative to a rapid-acting clinical analogue (insulin lispro). Although [C7UA , C7UB ] does not confer protracted action, nonetheless its comparison to internal diselenide bridges promises to provide broad biophysical insight

    One-pot ligation-oxidative deselenization at selenocysteine and selenocystine

    Get PDF
    The use of native chemical ligation at selenocysteine (Sec) with peptide thioesters and additive-free selenocystine ligation with peptides bearing phenyl selenoesters, in concert with one-pot oxidative deselenization chemistry, is described. These approaches provide a simple and rapid method for accessing native peptides with serine in place of Sec at the ligation junction. The efficiency of both variants of the one-pot ligation-oxidative deselenization chemistry is probed through the synthesis of a MUC5AC-derived glycopeptide

    Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine

    Get PDF
    Despite the unique chemical properties of selenocysteine (Sec), ligation at Sec is an under‐utilized methodology for protein synthesis. We describe herein an unprecedented protocol for the conversion of Sec to serine (Ser) in a single, high‐yielding step. When coupled with ligation at Sec, this transformation provides a new approach to programmed ligations at Ser residues. This new reaction is compatible with a wide range of functionality, including the presence of unprotected amino acid side chains and appended glycans. The utility of the methodology is demonstrated in the rapid synthesis of complex glycopeptide fragments of the epithelial glycoproteins MUC5AC and MUC4 and through the total synthesis of the structured, cysteine (Cys)‐free protein eglin C

    Utilizing Copper-Mediated Deprotection of Selenazolidine for Cyclic Peptides Synthesis

    No full text
    Selenazoliline (Sez) was originally developed as a masking form of selenocysteine (Sec) for the chemical synthesis of challenging proteins. Here we utilize Sez and our recent reported copper(II)-mediated deprotection for the synthesis of cyclic peptides. This approach allows deprotection, cyclization and deselenization in one-pot, providing several different cyclic peptides in good yields. In addition, the Sec can also be retained, which enhance the oxidative folding of disulfide-rich cyclic proteins, such as the case of Kalata S. </p

    Copper-mediated selenazolidine deprotection enables one-pot chemical synthesis of challenging proteins

    No full text
    While chemical protein synthesis (CPS) has granted access to challenging proteins, synthesis of longer proteins is often limited by low abundance or non-strategic placement of cysteine (Cys) residues, essential for native chemical ligations (NCL), as well as multiple purification and isolation steps. Selective deselenization and one-pot CPS serve as key technologies to circumvent these issues. Herein, we describe the one-pot total synthesis of human thiosulfate: glutathione sulfurtransferase (TSTD1), a 115-residue protein with a single Cys residue at its active site, and its seleno-analogue. WT-TSTD1 was synthesized in a C-to-N synthetic approach employing multiple NCL reactions, Cu(II)-mediated deprotection of selenazolidine (Sez), and chemoselective deselenization, all in one-pot. In addition, the protein’s seleno analogue (Se-TSTD1), in which the active site Cys is replaced with selenocysteine, was synthesized with a kinetically controlled ligation in a one-pot, N-to-C synthetic approach. TSTD1’s one-pot synthesis was made possible by the newly reported, rapid, and facile copper-mediated selenazolidine deprotection that can be accomplished in one minute. Finally, catalytic activity of the two proteins indicated that Se-TSTD1 possessed only four-fold lower activity than WT-TSTD1 as a thiosulfate: glutathione sulfurtransferase, suggesting that selenoproteins can have physiologically comparable sulfutransferase activity as their cysteine counterparts. </p

    Chemoselective Copper-Mediated Radical Modification of Selenocysteines in Peptides and Proteins

    No full text
    Highly valuable bioconjugated molecules must be synthesized through efficient, chemoselective chemical modifications of peptides and proteins. Herein we report the chemoselective modification of peptides and proteins via a reaction between selenocysteine residues and aryl/alkyl radicals. In situ radical generation from hydrazine substrates and copper ions proceeds rapidly in neat aqueous buffer at near neutral pH (5-8), providing a variety of Se-modified linear and cyclic peptides and proteins conjugated to aryl and alkyl molecules, as well as to affinity label tag (biotin). This chemistry opens a new avenue for chemical protein modifications

    Harnessing selenocysteine reactivity for oxidative protein folding

    No full text
    Although oxidative folding of disulfide-rich proteins is often sluggish, this process can be significantly enhanced by targeted replacement of cysteines with selenocysteines. In this study, we examined the effects of a selenosulfide and native versus nonnative diselenides on the folding rates and mechanism of bovine pancreatic trypsin inhibitor. Our results show that such sulfur-to-selenium substitutions alter the distribution of key folding intermediates and enhance their rates of interconversion in a context-dependent manner.ISSN:2041-6520ISSN:2041-653
    • …
    corecore