11 research outputs found

    <span style="font-size:15.0pt;mso-bidi-font-size: 14.0pt;mso-bidi-font-weight:bold" lang="EN-US">Immobilization of cellulase on TiO<sub>2 </sub>nanoparticles by physical and covalent methods: A comparative study </span>

    No full text
    314-320Immobilization of cellulase from Aspergillus niger on TiO2 nanoparticles was studied by two different approaches — physical adsorption and covalent coupling. A. niger was selected, as it is generally non-pathogenic, is found in nature in the broad range of habitats and produces cellulase extracellulary. For covalent method, TiO2 nanoparticles were modified with aminopropyltriethoxysilane (APTS). The adsorbed and covalently immobilized enzymes showed 76% and 93% activity, respectively, as compared to the free enzyme. The catalytic efficiency Vmax/Km increased from 0.4 to 4.0 after covalent attachment, whereas in adsorption method, it increased slightly from 0.4 to 1.2. The covalently-immobilized and adsorbed cellulase lost only 25% and 50% of their activity, respectively after 60 min of incubation at 75°C. The reusability and operational stability data also showed that covalent coupling increased the stability of the enzyme. The presence of enzyme on TiO2 nanoparticles was confirmed by Fourier-transform infrared spectroscopy. The high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) studies indicated aggregation of enzyme when adsorbed on TiO2 surface and a monolayer of enzyme in covalent attachment. In conclusion, covalently attached cellulase retained good activity and thermal stability, as compared to physically adsorbed enzyme. The lower amount of enzyme activity and thermal stability in case of physically adsorbed immobilized enzyme was due to aggregation of the enzyme after adsorption on TiO2 nanoparticles, as revealed by HR-TEM and AFM. Thus, TiO2 nanoparticles could be suitable candidates for immobilization of cellulase for industrial applications like paper, textile, detergent and food industries

    Synergy with Rifampin and Kanamycin Enhances Potency, Kill Kinetics, and Selectivity of De Novo-Designed Antimicrobial Peptides▿

    No full text
    By choosing membranes as targets of action, antibacterial peptides offer the promise of providing antibiotics to which bacteria would not become resistant. However, there is a need to increase their potency against bacteria along with achieving a reduction in toxicity to host cells. Here, we report that three de novo-designed antibacterial peptides (ΔFm, ΔFmscr, and Ud) with poor to moderate antibacterial potencies and kill kinetics improved significantly in all of these aspects when synergized with rifampin and kanamycin against Escherichia coli. (ΔFm and ΔFmscr [a scrambled-sequence version of ΔFm] are isomeric, monomeric decapeptides containing the nonproteinogenic amino acid α,ÎČ-didehydrophenylalanine [ΔF] in their sequences. Ud is a lysine-branched dimeric peptide containing the helicogenic amino acid α-aminoisobutyric acid [Aib].) In synergy with rifampin, the MIC of ΔFmscr showed a 34-fold decrease (67.9 ÎŒg/ml alone, compared to 2 ÎŒg/ml in combination). A 20-fold improvement in the minimum bactericidal concentration of Ud was observed when the peptide was used in combination with rifampin (369.9 ÎŒg/ml alone, compared to 18.5 ÎŒg/ml in combination). Synergy with kanamycin resulted in an enhancement in kill kinetics for ΔFmscr (no killing until 60 min for ΔFmscr alone, versus 50% and 90% killing within 20 min and 60 min, respectively, in combination with kanamycin). Combination of the dendrimeric peptide ΔFq (a K-K2 dendrimer for which the sequence of ΔFm constitutes each of the four branches) (MIC, 21.3 ÎŒg/ml) with kanamycin (MIC, 2.1 ÎŒg/ml) not only lowered the MIC of each by 4-fold but also improved the therapeutic potential of this highly hemolytic (37% hemolysis alone, compared to 4% hemolysis in combination) and cytotoxic (70% toxicity at 10× MIC alone, versus 30% toxicity in combination) peptide. Thus, synergy between peptide and nonpeptide antibiotics has the potential to enhance the potency and target selectivity of antibacterial peptides, providing regimens which are more potent, faster acting, and safer for clinical use

    Development of Cost-Effective, Ecofriendly Selenium Nanoparticle-Functionalized Cotton Fabric for Antimicrobial and Antibiofilm Activity

    No full text
    In the present study, selenium nanoparticles were synthesized in situ on alkali-activated cotton fabric using guava leaf extract as a reducing agent. The synthesis was monitored by a change in color of fabric from white to light brick red. The UV-DRS analysis confirms the coating of Se NPs on cotton. The XRD, FT-IR, and SEM-EDX characterization techniques were used to analyze the nanoparticles on cotton fabric. The peak at 788 cm−1 in FT-IR confirms the formation of Se NPs on cotton fabric. The XRD analysis confirms that the average crystallite size of as-prepared nanoparticle is ~17 nm. SEM-EDX analysis shows the successful coating of Se NPs on coated fabric. ICP-OES studies confirm 3.65 mg/g of selenium nanoparticles were present on the fabric. The Se-coated-30 showed a larger zone of inhibition against Gram-positive S. aureus (32 mm) compared to Gram-negative strains of E. coli (16 mm) and K. pneumoniae (26 mm). The fabric was also tested against the fungi C. glabrata (45 mm), C. tropicalis (35 mm), and C. albicans (35 mm) and results indicate it is more effective against fungal compared to bacterial strains. The coated fabric inhibits biofilm formation of C. albicans (99%), S. aureus (78%), and E. coli (58%). The results demonstrated excellent antibacterial, antifungal, and antibiofilm activities of the Se-coated-30. The prepared fabric has the potential to be used in medicinal applications and is both ecofriendly and cost effective

    Multifunctional Electrochemical Properties of Synthesized Non-Precious Iron Oxide Nanostructures

    No full text
    Magnetic Fe3O4 nanostructures for electrochemical water splitting and supercapacitor applications were synthesized by low temperature simple wet-chemical route. The crystal structure and morphology of as-acquired nanostructures were examined by powder X-ray diffraction and transmission electron microscopy. Magnetic measurements indicate that the as-synthesized Fe3O4 nanostructures are ferromagnetic at room temperature. The synthesized nanostructures have a high-specific surface area of 268 m2/g, which affects the electrocatalytic activity of the electrode materials. The purity of the as-synthesized nanostructures was affirmed by Raman and X-ray Photoelectron studies. The electrochemical activity of the magnetic iron oxide nanoparticles (MIONPs) for the hydrogen evolution reaction (HER) and supercapacitors were investigated in alkaline medium (0.5 M KOH) versus Ag/AgCl at room temperature. The electrocatalysts show low onset potential (~0.18 V) and Tafel slope (~440 mV/dec) for HER. Additionally, the specific capacitance of MIONPs was investigated, which is to be ~135 &plusmn; 5 F/g at 5 mV/s in 1 M KOH
    corecore