91 research outputs found

    Her Life Depends on it: Sport, Physical Activity and the Health and Well-Being of American Girls

    Get PDF
    By Don Sabo, Kathleen E. Miller, Merrill J. Melnick, Leslie Heywood.https://digitalcommons.brockport.edu/bookshelf/1166/thumbnail.jp

    Estimating Negative Likelihood Ratio Confidence When Test Sensitivity is 100%: A Bootstrapping Approach

    Get PDF
    Objectives: Assessing high-sensitivity tests for mortal illness is crucial in emergency and critical care medicine. Estimating the 95% confidence interval (CI) of the likelihood ratio (LR) can be challenging when sample sensitivity is 100%. We aimed to develop, compare, and automate a bootstrapping method to estimate the negative LR CI when sample sensitivity is 100%. Methods: The lowest population sensitivity that is most likely to yield sample sensitivity 100% is located using the binomial distribution. Random binomial samples generated using this population sensitivity are then used in the LR bootstrap. A free R program, “bootLR,” automates the process. Extensive simulations were performed to determine how often the LR bootstrap and comparator method 95% CIs cover the true population negative LR value. Finally, the 95% CI was compared for theoretical sample sizes and sensitivities approaching and including 100% using: (1) a technique of individual extremes, (2) SAS software based on the technique of Gart and Nam, (3) the Score CI (as implemented in the StatXact, SAS, and R PropCI package), and (4) the bootstrapping technique. Results: The bootstrapping approach demonstrates appropriate coverage of the nominal 95% CI over a spectrum of populations and sample sizes. Considering a study of sample size 200 with 100 patients with disease, and specificity 60%, the lowest population sensitivity with median sample sensitivity 100% is 99.31%. When all 100 patients with disease test positive, the negative LR 95% CIs are: individual extremes technique (0,0.073), StatXact (0,0.064), SAS Score method (0,0.057), R PropCI (0,0.062), and bootstrap (0,0.048). Similar trends were observed for other sample sizes. Conclusions: When study samples demonstrate 100% sensitivity, available methods may yield inappropriately wide negative LR CIs. An alternative bootstrapping approach and accompanying free open-source R package were developed to yield realistic estimates easily. This methodology and implementation are applicable to other binomial proportions with homogeneous responses

    MHD alpha^2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator

    Full text link
    It is shown that the alpha^2-dynamo of Magnetohydrodynamics, the hydrodynamic Squire equation as well as an interpolation model of PT-symmetric Quantum Mechanics are closely related as spectral problems in Krein spaces. For the alpha^2-dynamo and the PT-symmetric model the strong similarities are demonstrated with the help of a 2x2 operator matrix representation, whereas the Squire equation is re-interpreted as a rescaled and Wick-rotated PT-symmetric problem. Based on recent results on the Squire equation the spectrum of the PT-symmetric interpolation model is analyzed in detail and the Herbst limit is described as spectral singularity.Comment: 21 pages, LaTeX2e, 10 figures, minor improvements, references added, to appear in J. Math. Phy

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Search for Gravitational Wave Bursts from Six Magnetars

    Get PDF
    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom

    Directional limits on persistent gravitational waves using LIGO S5 science data

    Get PDF
    The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the many possible sources of GWs are not well constrained, searches for GW signals must be performed in a model-independent way. To that end we perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. The latter result is the first of its kind. Finding no evidence to support the detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2 Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of 30 improvement over the previous best limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic Center as low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These limits are the most constraining to date and constitute a factor of 5 improvement over the previous best limits.Comment: 10 pages, 4 figure

    Calibration of the LIGO gravitational wave detectors in the fifth science run

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to detect local perturbations in the space–time metric from astrophysical sources. These detectors, two in Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated one year of triple coincident data while operating at their designed sensitivity. In this paper, we describe the calibration of the instruments in the S5 data set, including measurement techniques and uncertainty estimation.United States. National Aeronautics and Space AdministrationCarnegie TrustLeverhulme TrustDavid & Lucile Packard FoundationResearch CorporationAlfred P. Sloan Foundatio

    All-sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data

    Get PDF
    We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6e-9 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h0h_0 is 1e-24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8e-24 for all polarizations and sky locations. These results constitute a factor of two improvement upon previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion.Comment: 18 page
    • …
    corecore