94 research outputs found
Einstein equations in the null quasi-spherical gauge III: numerical algorithms
We describe numerical techniques used in the construction of our 4th order
evolution for the full Einstein equations, and assess the accuracy of
representative solutions. The code is based on a null gauge with a
quasi-spherical radial coordinate, and simulates the interaction of a single
black hole with gravitational radiation. Techniques used include spherical
harmonic representations, convolution spline interpolation and filtering, and
an RK4 "method of lines" evolution. For sample initial data of "intermediate"
size (gravitational field with 19% of the black hole mass), the code is
accurate to 1 part in 10^5, until null time z=55 when the coordinate condition
breaks down.Comment: Latex, 38 pages, 29 figures (360Kb compressed
On the dual cascade in two-dimensional turbulence
We study the dual cascade scenario for two-dimensional turbulence driven by a
spectrally localized forcing applied over a finite wavenumber range
[k_\min,k_\max] (with k_\min > 0) such that the respective energy and
enstrophy injection rates and satisfy
k_\min^2\epsilon\le\eta\le k_\max^2\epsilon. The classical
Kraichnan--Leith--Batchelor paradigm, based on the simultaneous conservation of
energy and enstrophy and the scale-selectivity of the molecular viscosity,
requires that the domain be unbounded in both directions. For two-dimensional
turbulence either in a doubly periodic domain or in an unbounded channel with a
periodic boundary condition in the across-channel direction, a direct enstrophy
cascade is not possible. In the usual case where the forcing wavenumber is no
greater than the geometric mean of the integral and dissipation wavenumbers,
constant spectral slopes must satisfy and , where
() is the asymptotic slope of the range of wavenumbers lower
(higher) than the forcing wavenumber. The influence of a large-scale
dissipation on the realizability of a dual cascade is analyzed. We discuss the
consequences for numerical simulations attempting to mimic the classical
unbounded picture in a bounded domain.Comment: 22 pages, to appear in Physica
A pseudospectral matrix method for time-dependent tensor fields on a spherical shell
We construct a pseudospectral method for the solution of time-dependent,
non-linear partial differential equations on a three-dimensional spherical
shell. The problem we address is the treatment of tensor fields on the sphere.
As a test case we consider the evolution of a single black hole in numerical
general relativity. A natural strategy would be the expansion in tensor
spherical harmonics in spherical coordinates. Instead, we consider the simpler
and potentially more efficient possibility of a double Fourier expansion on the
sphere for tensors in Cartesian coordinates. As usual for the double Fourier
method, we employ a filter to address time-step limitations and certain
stability issues. We find that a tensor filter based on spin-weighted spherical
harmonics is successful, while two simplified, non-spin-weighted filters do not
lead to stable evolutions. The derivatives and the filter are implemented by
matrix multiplication for efficiency. A key technical point is the construction
of a matrix multiplication method for the spin-weighted spherical harmonic
filter. As example for the efficient parallelization of the double Fourier,
spin-weighted filter method we discuss an implementation on a GPU, which
achieves a speed-up of up to a factor of 20 compared to a single core CPU
implementation.Comment: 33 pages, 9 figure
Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres
We describe a new scheme for evolving the equations of force-free
electrodynamics, the vanishing-inertia limit of magnetohydrodynamics. This
pseudospectral code uses global orthogonal basis function expansions to take
accurate spatial derivatives, allowing the use of an unstaggered mesh and the
complete force-free current density. The method has low numerical dissipation
and diffusion outside of singular current sheets. We present a range of one-
and two-dimensional tests, and demonstrate convergence to both smooth and
discontinuous analytic solutions. As a first application, we revisit the
aligned rotator problem, obtaining a steady solution with resistivity localised
in the equatorial current sheet outside the light cylinder.Comment: 23 pages, 18 figures, accepted for publication in MNRA
Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum
Two-dimensional turbulence appears to be a more formidable problem than
three-dimensional turbulence despite the numerical advantage of working with
one less dimension. In the present paper we review recent numerical
investigations of the phenomenology of two-dimensional turbulence as well as
recent theoretical breakthroughs by various leading researchers. We also review
efforts to reconcile the observed energy spectrum of the atmosphere (the
spectrum) with the predictions of two-dimensional turbulence and
quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for
Warwick Turbulence Symposium Workshop on Universal features in turbulence:
from quantum to cosmological scales, 200
Ring-billed Gull and California Gull nesting colony in south central British Columbia
Volume: 88Start Page: 484End Page: 48
- …
