94 research outputs found

    Einstein equations in the null quasi-spherical gauge III: numerical algorithms

    Get PDF
    We describe numerical techniques used in the construction of our 4th order evolution for the full Einstein equations, and assess the accuracy of representative solutions. The code is based on a null gauge with a quasi-spherical radial coordinate, and simulates the interaction of a single black hole with gravitational radiation. Techniques used include spherical harmonic representations, convolution spline interpolation and filtering, and an RK4 "method of lines" evolution. For sample initial data of "intermediate" size (gravitational field with 19% of the black hole mass), the code is accurate to 1 part in 10^5, until null time z=55 when the coordinate condition breaks down.Comment: Latex, 38 pages, 29 figures (360Kb compressed

    On the dual cascade in two-dimensional turbulence

    Full text link
    We study the dual cascade scenario for two-dimensional turbulence driven by a spectrally localized forcing applied over a finite wavenumber range [k_\min,k_\max] (with k_\min > 0) such that the respective energy and enstrophy injection rates ϵ\epsilon and η\eta satisfy k_\min^2\epsilon\le\eta\le k_\max^2\epsilon. The classical Kraichnan--Leith--Batchelor paradigm, based on the simultaneous conservation of energy and enstrophy and the scale-selectivity of the molecular viscosity, requires that the domain be unbounded in both directions. For two-dimensional turbulence either in a doubly periodic domain or in an unbounded channel with a periodic boundary condition in the across-channel direction, a direct enstrophy cascade is not possible. In the usual case where the forcing wavenumber is no greater than the geometric mean of the integral and dissipation wavenumbers, constant spectral slopes must satisfy β>5\beta>5 and α+β8\alpha+\beta\ge8, where α-\alpha (β-\beta) is the asymptotic slope of the range of wavenumbers lower (higher) than the forcing wavenumber. The influence of a large-scale dissipation on the realizability of a dual cascade is analyzed. We discuss the consequences for numerical simulations attempting to mimic the classical unbounded picture in a bounded domain.Comment: 22 pages, to appear in Physica

    A pseudospectral matrix method for time-dependent tensor fields on a spherical shell

    Full text link
    We construct a pseudospectral method for the solution of time-dependent, non-linear partial differential equations on a three-dimensional spherical shell. The problem we address is the treatment of tensor fields on the sphere. As a test case we consider the evolution of a single black hole in numerical general relativity. A natural strategy would be the expansion in tensor spherical harmonics in spherical coordinates. Instead, we consider the simpler and potentially more efficient possibility of a double Fourier expansion on the sphere for tensors in Cartesian coordinates. As usual for the double Fourier method, we employ a filter to address time-step limitations and certain stability issues. We find that a tensor filter based on spin-weighted spherical harmonics is successful, while two simplified, non-spin-weighted filters do not lead to stable evolutions. The derivatives and the filter are implemented by matrix multiplication for efficiency. A key technical point is the construction of a matrix multiplication method for the spin-weighted spherical harmonic filter. As example for the efficient parallelization of the double Fourier, spin-weighted filter method we discuss an implementation on a GPU, which achieves a speed-up of up to a factor of 20 compared to a single core CPU implementation.Comment: 33 pages, 9 figure

    Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres

    Full text link
    We describe a new scheme for evolving the equations of force-free electrodynamics, the vanishing-inertia limit of magnetohydrodynamics. This pseudospectral code uses global orthogonal basis function expansions to take accurate spatial derivatives, allowing the use of an unstaggered mesh and the complete force-free current density. The method has low numerical dissipation and diffusion outside of singular current sheets. We present a range of one- and two-dimensional tests, and demonstrate convergence to both smooth and discontinuous analytic solutions. As a first application, we revisit the aligned rotator problem, obtaining a steady solution with resistivity localised in the equatorial current sheet outside the light cylinder.Comment: 23 pages, 18 figures, accepted for publication in MNRA

    Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum

    Get PDF
    Two-dimensional turbulence appears to be a more formidable problem than three-dimensional turbulence despite the numerical advantage of working with one less dimension. In the present paper we review recent numerical investigations of the phenomenology of two-dimensional turbulence as well as recent theoretical breakthroughs by various leading researchers. We also review efforts to reconcile the observed energy spectrum of the atmosphere (the spectrum) with the predictions of two-dimensional turbulence and quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for Warwick Turbulence Symposium Workshop on Universal features in turbulence: from quantum to cosmological scales, 200

    Ring-billed Gull and California Gull nesting colony in south central British Columbia

    No full text
    Volume: 88Start Page: 484End Page: 48

    On estimation of truncation errors using the -3 law for kinetic energy

    Full text link

    Macquarie Island 54 Degrees South

    Full text link

    Red-Headed Woodpecker in the Kananaskis Valley

    Full text link
    corecore