1,029 research outputs found

    Graphene field-effect transistors based on boron nitride gate dielectrics

    Full text link
    Graphene field-effect transistors are fabricated utilizing single-crystal hexagonal boron nitride (h-BN), an insulating isomorph of graphene, as the gate dielectric. The devices exhibit mobility values exceeding 10,000 cm2/V-sec and current saturation down to 500 nm channel lengths with intrinsic transconductance values above 400 mS/mm. The work demonstrates the favorable properties of using h-BN as a gate dielectric for graphene FETs.Comment: 4 pages, 8 figure

    The response of benthic foraminifer, ostracod and mollusc assemblages to environmental conditions: a case study from the Camalti Saltpan (Izmir-Western Turkey)

    Get PDF
    The subject of this report is benthic foraminifer populations preserved in the saltpan of Camalti in the Province of Izmir. High salinity in certain habitats of Ammonia tepida Cushman may be the primary cause of the high rate of twins and triplets as well as other morphological abnormalities recorded within this species (50 % as compared to an anomaly rate of 1 % in normal marine waters). Thicker cyst membrane developing in extremely saline environments may encourage twins and other morphological deformities by denying free movement of the offspring. Ecological factors such as heavy metal contamination of ambient waters as well as contamination by other wastes are also not ruled out as leading to such developmental anomalies. Of the 27 collected samples, Number 5 (that is closest to the sea) includes the typical marine foraminifers. Nonion depressulum (Walker & Jacob), Ammonia tepida Cushman and Porosononion subgronosum(Egger) are the dominant species in other samples. A total of 63 abnormal individuals (8 triplets, 24 twins, and 31 morphological anomalies) was found within seven of the 27 samples collected. Ten samples contained freshwater ostracods: Darwinula stevensoni(Brady and Robertson), Leptocythere lacertosa Hirschmann, Cyprideis torasa (Jones), Cyprideis (C.) anatolica Bassiouni, and Loxochoncha elliptica Brady. Among these samples (some of which contained only a few species of ostracods - and those limited in number of offspring), one had an unusually high ratio of healthy foraminifers vs those with anomalies. Worthy of note in another sample was a high abundance of molluscs. Among pelecypods, were found Ostrea edulis Linné, Lucinella divaricata (Linné), Pseudocama gryphina Lamarck,Cerastoderma edule (Linné), and Scrobicularia plana da Costa; and among gastropods were identified Hydrobi (Hydrobia) acuta(Draparnaud), Rissoa labiosa (Montagu), R. parva (da Costa), R. violacea Desmarest, Pirenella conica (Blainville), Bittium desayesi(Cerulli and Irelli), B. lacteum Philippi and B. reticulatum Philippi

    Study of strong turbulence effects for optical wireless links

    Get PDF
    Strong turbulence measurements that are taken using real time optical wireless experimental setups are valuable when studying the effects of turbulence regimes on a propagating optical beam. In any kind of FSO system, for us to know the strength of the turbulence thus the refractive index structure constant, is beneficial for having an optimum bandwidth of communication. Even if the FSO Link is placed very well-high-above the ground just to have weak enough turbulence effects, there can be severe atmospheric conditions that can change the turbulence regime. Having a successful theory that will cover all regimes will give us the chance of directly processing the image in existing or using an additional hardware thus deciding on the optimum bandwidth of the communication line at firsthand. For this purpose, Strong Turbulence data has been collected using an outdoor optical wireless setup placed about 85 centimeters above the ground with an acceptable declination and a path length of about 250 meters inducing strong turbulence to the propagating beam. Variations of turbulence strength estimation methods as well as frame image analysis techniques are then been applied to the experimental data in order to study the effects of different parameters on the result. Such strong turbulence data is compared with existing weak and intermediate turbulence data. Aperture Averaging Factor for different turbulence regimes is also investigated. © 2012 SPIE

    Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response.

    Get PDF
    BackgroundThis retrospective study aims to investigate the activity of retreatment with anti-EGFR-based therapies in order to explore the concept of clonal evolution by evaluating the impact of prior activity and intervening time interval.MethodsEighty-nine KRAS exon 2-wild-type metastatic colorectal patients were retreated on phase I/II clinical trials containing anti-EGFR therapies after progressing on prior cetuximab or panitumumab. Response on prior anti-EGFR therapy was defined retrospectively per physician-records as response or stable disease ≄6 months. Multivariable statistical methods included a multiple logistic regression model for response, and Cox proportional hazards model for progression-free survival.ResultsRetreatment anti-EGFR agents were cetuximab (n = 76) or cetuximab plus erlotinib (n = 13). The median interval time between prior and retreatment regimens was 4.57 months (range: 0.46-58.7). Patients who responded to the prior cetuximab or panitumumab were more likely to obtain clinical benefit to the retreatment compared to the non-responders in both univariate (p = 0.007) and multivariate analyses (OR: 3.38, 95 % CI: 1.27, 9.31, p = 0.019). The clinical benefit rate on retreatment also showed a marginally significant association with interval time between the two anti-EGFR based therapies (p = 0.053). Median progression-free survival on retreatment was increased in prior responders (4.9 months, 95 % CI: 3.6, 6.2) compared to prior non-responders (2.5 months, 95 % CI, 1.58, 3.42) in univariate (p = 0.064) and multivariate analysis (HR: 0.70, 95 % CI: 0.43-1.15, p = 0.156).ConclusionOur data lends support to the concept of clonal evolution, though the clinical impact appears less robust than previously reported. Further work to determine which patients benefit from retreatment post progression is needed

    Extending ballistic graphene FET lumped element models to diffusive devices

    Full text link
    In this work, a modified, lumped element graphene field effect device model is presented. The model is based on the "Top-of-the-barrier" approach which is usually valid only for ballistic graphene nanotransistors. Proper modifications are introduced to extend the model's validity so that it accurately describes both ballistic and diffusive graphene devices. The model is compared to data already presented in the literature. It is shown that a good agreement is obtained for both nano-sized and large area graphene based channels. Accurate prediction of drain current and transconductance for both cases is obtained

    Quantum interference and Klein tunneling in graphene heterojunctions

    Full text link
    The observation of quantum conductance oscillations in mesoscopic systems has traditionally required the confinement of the carriers to a phase space of reduced dimensionality. While electron optics such as lensing and focusing have been demonstrated experimentally, building a collimated electron interferometer in two unconfined dimensions has remained a challenge due to the difficulty of creating electrostatic barriers that are sharp on the order of the electron wavelength. Here, we report the observation of conductance oscillations in extremely narrow graphene heterostructures where a resonant cavity is formed between two electrostatically created bipolar junctions. Analysis of the oscillations confirms that p-n junctions have a collimating effect on ballistically transmitted carriers. The phase shift observed in the conductance fringes at low magnetic fields is a signature of the perfect transmission of carriers normally incident on the junctions and thus constitutes a direct experimental observation of ``Klein Tunneling.''Comment: 13 pages and 6 figures including supplementary information. The paper has been modified in light of new theoretical results available at arXiv:0808.048

    Photocurrent measurements of supercollision cooling in graphene

    Full text link
    The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot electron cooling rate near the Fermi level by using graphene as novel photothermal thermometer that measures the electron temperature (T(t)T(t)) as it cools dynamically. We find the photocurrent generated from graphene p−np-n junctions is well described by the energy dissipation rate CdT/dt=−A(T3−Tl3)C dT/dt=-A(T^3-T_l^3), where the heat capacity is C=αTC=\alpha T and TlT_l is the base lattice temperature. These results are in disagreement with predictions of electron-phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision (SC) cooling mechanism. We find that the SC model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to ∌\sim3000 K) and lattice (10 to 295 K) temperatures investigated.Comment: 7pages, 5 figure
    • 

    corecore