research

Photocurrent measurements of supercollision cooling in graphene

Abstract

The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot electron cooling rate near the Fermi level by using graphene as novel photothermal thermometer that measures the electron temperature (T(t)T(t)) as it cools dynamically. We find the photocurrent generated from graphene pnp-n junctions is well described by the energy dissipation rate CdT/dt=A(T3Tl3)C dT/dt=-A(T^3-T_l^3), where the heat capacity is C=αTC=\alpha T and TlT_l is the base lattice temperature. These results are in disagreement with predictions of electron-phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision (SC) cooling mechanism. We find that the SC model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to \sim3000 K) and lattice (10 to 295 K) temperatures investigated.Comment: 7pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions