236 research outputs found

    <i>Alteromonas stellipolaris</i> sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus <i>Alteromonas</i>

    Get PDF
    Seven novel, cold-adapted, strictly aerobic, facultatively oligotrophic strains, isolated from Antarctic sea water, were investigated by using a polyphasic taxonomic approach. The isolates were Gram-negative, chemoheterotrophic, motile, rod-shaped cells that were psychrotolerant and moderately halophilic. Buds were produced on mother and daughter cells and on prosthecae. Prostheca formation was peritrichous and prosthecae could be branched. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains belong to the γ-Proteobacteria and are related to the genus Alteromonas, with 98·3 % sequence similarity to Alteromonas macleodii and 98·0 % to Alteromonas marina, their nearest phylogenetic neighbours. Whole-cell fatty acid profiles of the isolates were very similar and included C16 : 0, C16 : 1 ω7c, C17 : 1 ω8c and C18 : 1 ω8c as the major fatty acid components. These results support the affiliation of these isolates to the genus Alteromonas. DNA–DNA hybridization results and differences in phenotypic characteristics show that the strains represent a novel species with a DNA G+C content of 43–45 mol%. The name Alteromonas stellipolaris sp. nov. is proposed for this novel species; the type strain is ANT 69aT (=LMG 21861T=DSM 15691T). An emended description of the genus Alteromonas is given

    Female genital mutilation in the European Union and Croatia

    Get PDF

    Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides

    Get PDF
    In legume nodules, rhizobia differentiate into nitrogen-fixing forms called bacteroids, which are enclosed by a plant membrane in an organelle-like structure called the symbiosome. In the Inverted Repeat-Lacking Clade (IRLC) of legumes, this differentiation is terminal due to irreversible loss of cell division ability and is associated with genome amplification and different morphologies of the bacteroids that can be swollen, elongated, spherical, and elongatedbranched, depending on the host plant. In Medicago truncatula, this process is orchestrated by nodule-specific cysteine-rich peptides (NCRs) delivered into developing bacteroids. Here, we identified the predicted NCR proteins in 10 legumes representing different subclades of the IRLC with distinct bacteroid morphotypes. Analysis of their expression and predicted sequences establishes correlations between the composition of the NCR family and the morphotypes of bacteroids. Although NCRs have a single origin, their evolution has followed different routes in individual lineages, and enrichment and diversification of cationic peptides has resulted in the ability to impose major morphological changes on the endosymbionts. The wide range of effects provoked by NCRs such as cell enlargement, membrane alterations and permeabilization, and biofilm and vesicle formation is dependent on the amino acid composition and charge of the peptides. These effects are strongly influenced by the rhizobial surface polysaccharides that affect NCR-induced differentiation and survival of rhizobia in nodule cells

    Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein

    Get PDF
    The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human \u3b2-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac71-16. This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections

    Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus–Rhizobium sp. NGR234 interaction

    Get PDF
    Lotus japonicus, a model legume, develops an efficient, nitrogen-fixing symbiosis with Mesorhizobium loti that promotes plant growth. Lotus japonicus also forms functional nodules with Rhizobium sp. NGR234 and R. etli. Yet, in a plant defence-like reaction, nodules induced by R. etli quickly degenerate, thus limiting plant growth. In contrast, nodules containing NGR234 are long-lasting. It was found that NGR234 initiates nodule formation in a similar way to M. loti MAFF303099, but that the nodules which develop on eleven L. japonicus ecotypes are less efficient in fixing nitrogen. Detailed examination of nodulation of L. japonicus cultivar MG-20 revealed that symbiosomes formed four weeks after inoculation by NGR234 are enlarged in comparison with MAFF303099 and contain multiple bacteroids. Nevertheless, nodules formed by NGR234 fix sufficient nitrogen to avoid rejection by the plant. With time, these nodules develop into fully efficient organs containing bacteroids tightly enclosed in symbiosome membranes, just like those formed by M. loti MAFF303099. This work demonstrates the usefulness of using the well-characterized micro-symbiont NGR234 to study symbiotic signal exchange in the later stages of rhizobia–legume symbioses, especially given the large range of bacterial (NGR234) and plant (L. japonicus) mutants that are available

    Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha

    Get PDF
    We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was constructed using our data that predicts the effects of these acids, individually and in combination, on cell dry weight (CDW), PHA content (%CDW), PHA production, 3HV in the polymer, and final culture pH. Cell growth and PHA production improved approximately 1.5-fold over initial conditions when the proportion of butyrate was increased. Optimization of the phosphate buffer content in medium containing higher amounts of butyrate improved cell growth and PHA production more than 4-fold. The validated organic acid mixture analysis model can be used to optimize R. eutropha culture conditions, in order to meet targets for PHA production and/or polymer HV content. By modifying the growth medium made from treated industrial waste, such as palm oil mill effluent, more PHA can be produced.Malaysia. Ministry of Science, Technology and Innovation (MOSTI

    Role of Symbiotic Auxotrophy in the Rhizobium-Legume Symbioses

    Get PDF
    Symbiotic auxotrophy occurs in both determinate pea and indeterminate bean nodules demonstrating its importance for bacteroid formation and nodule function in legumes with different developmental programmes. However, only small quantities of branched chain amino acids are needed and symbiotic auxotrophy did not occur in the Sinorhizobium meliloti-alfalfa symbiosis under the conditions measured. The contrasting symbiotic phenotypes of aap bra mutants inoculated on different legumes probably reflects altered timing of amino acid availability, development of symbiotic auxotrophy and nodule developmental programmes

    Regulation of differentiation of nitrogen-fixing bacteria by microsymbiont targeting of plant thioredoxin s1

    Get PDF
    Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions
    corecore