8 research outputs found

    Efecto de la humedad del suelo sobre la productividad de plantas de pataca Helianthus tuberosus L

    No full text
    Centro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai

    Biocarburantes de segunda generación

    No full text

    Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context

    Get PDF
    Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB), extracted olive pomace (EOP) and olive leaves (OL) that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach

    Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria

    No full text
    The use of lignocellulosic biomass for second generation biofuels requires optimization of enzymatic breakdown of plant cell walls. In this work, cellulolytic bacteria were isolated from a native and two cultivated forest soil samples. Amplification of glycosyl hydrolases was attempted by using a low stringency-degenerate primer PCR strategy, using total soil DNA and bulk DNA pooled from positive colonies as template. A set of primers was designed based on Acidothermus cellulolyticus genome, by search of conserved domains of glycosyl hydrolases (GH) families of interest. Using this approach, a fragment containing an open reading frame (ORF) with 98% identity to a putative GH43 beta-xylosidase coding gene from Enterobacter cloacae was amplified and cloned. The full protein was expressed in Escherichia coli as N-terminal or C-terminal His-tagged fusions and purified under native conditions. Only N-terminal fusion protein, His-Xyl43, presented beta-xylosidase activity. On pNPX, optimal activity was achieved at pH 6 and 40°C and Km and Kcat values were 2.92mM and 1.32seg-1, respectively. Activity was also demonstrated on xylobiose (X2), with Km 17.8mM and Kcat 380s-1. These results demonstrated that Xyl43 is a functional beta-xylosidase and it is the first evidence of this activity for Enterobacter sp.Fil: Campos, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Negro Alvarez, María José. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas; EspañaFil: Sabarís Di Lorenzo, Gonzalo Julián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: González, Sergio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Rorig, Marcela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; ArgentinaFil: Talia, Paola. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Grasso, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; ArgentinaFil: Sáez, Felicia. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas; EspañaFil: Manzanares Secades, Paloma. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas; EspañaFil: Ballesteros Perdices, Mercedes. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas; EspañaFil: Cataldi, Ángel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentin

    Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria

    No full text
    The use of lignocellulosic biomass for second generation biofuels requires optimization of enzymatic breakdown of plant cell walls. In this work, cellulolytic bacteria were isolated from a native and two cultivated forest soil samples. Amplification of glycosyl hydrolases was attempted by using a low stringency-degenerate primer PCR strategy, using total soil DNA and bulk DNA pooled from positive colonies as template. A set of primers was designed based on Acidothermus cellulolyticus genome, by search of conserved domains of glycosyl hydrolases (GH) families of interest. Using this approach, a fragment containing an open reading frame (ORF) with 98% identity to a putative GH43 beta-xylosidase coding gene from Enterobacter cloacae was amplified and cloned. The full protein was expressed in Escherichia coli as N-terminal or C-terminal His-tagged fusions and purified under native conditions. Only N-terminal fusion protein, His-Xyl43, presented beta-xylosidase activity. On pNPX, optimal activity was achieved at pH 6 and 40 °C and Km and Kcat values were 2.92 mM and 1.32 seg−1, respectively. Activity was also demonstrated on xylobiose (X2), with Km 17.8 mM and Kcat 380 s−1. These results demonstrated that Xyl43 is a functional beta-xylosidase and it is the first evidence of this activity for Enterobacter sp.Instituto de BiotecnologíaFil: Campos, Eleonora. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Negro Alvarez, María José. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Unidad Biocarburantes; EspañaFil: Sabaris Di Lorenzo, Gonzalo Julián. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Gonzalez, Sergio Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Rorig, Marcela Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Talia, Paola Mónica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Grasso, Daniel Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Sáez, Felicia. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Unidad Biocarburantes; EspañaFil: Manzanares Secades, Paloma. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Unidad Biocarburantes; EspañaFil: Ballesteros Perdices, Mercedes. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Unidad Biocarburantes; EspañaFil: Cataldi, Angel Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentin

    Challenge 8E. Valorization of biomass as energy source

    No full text
    27 páginasThe transport sector is the second largest energy consumer in EU being responsible for 33% of the total energy consumption and for about 25% of the total greenhouse gas emissions, and relies on crude oils for 95% of its energy needs. Decarbonizing the transport sector to support climate and energy goals is recognized as a major challenge in the Energy Roadmap 2050). The development of biofuels from sustainable biomass feedstocks can play an important role in this regard, supporting fuel security and the EU objective of having at least 32% of transport fuels derived from renewable sources by 2030, according to the Renewable Energy Directive 2018/2001. Plant biomass is the main source of renewable materials in Earth and represents a potential source of renewable energy and biobased products. Biomass is available in high amounts at very low cost (as forest, agricultural or industrial lignocellulosic wastes and cultures) and could be a widely available and inexpensive source for energy, transportation (bio)fuels and (bio)products. Using biomass as energy source can lower EU’s external energy dependence and reduce greenhouse gas emissions. In this regard, R&I need to focus on the efficient production of advanced biofuels from renewable sources. This chapter covers the main challenges that need to be addressed in the near future for using biomass as a safe and clean source of energy. Different technologies are reviewed for the production of energy from biomass, including thermochemical, biochemical and chemical processing technologies. The biomass can be burned, transformed into a fuel gas through partial combustion, into a biogas through fermentation, into bioethanol through biochemical processes, into biodiesel, into a bio-oil or into a syngas from which chemicals and liquid fuels can be synthesized. Moreover, it is being increasingly recognized that the overall cost-effectiveness of biomass-to-biofuels pathways can increase significantly through co-production of higher-added-value chemicals, and therefore, the concept of an integrated biorefinery for the production of energy, as well as chemicals, materials and commodities is also discussed here. Biorefineries will definitively help improving and maximizing resource efficiency while improving sustainability in the sense of the Renewable Energy Directive 2018/2001Peer reviewe

    Fuentes de energía para el futuro

    No full text
    Resumen basado en el de la publicación. Este volumen tiene su origen en el curso de formación del profesorado de educación secundaria que se celebró en la Universidad Internacional Menéndez Pelayo de Santander, en el verano de 2007Se analizan las diferentes fuentes energéticas que se están utilizando, haciendo énfasis en los aspectos medioambientales y tecnológicos de estas energías. Se consideran las diferentes posibilidades de ahorro de energía, de reducción de la demanda y de aumento de la eficacia energética, particularizando para la situación energética de España. Los primeros capítulos se dedican al análisis global de las diferentes fuentes energéticas, sus impactos medioambientales, energía nuclear y vector de hidrógeno más pilas de combustibles. Los últimos capítulos se dedican al análisis de las fuentes de energía renovables (eólica, biomasa y solar) finalmente se analiza la enseñanza de la energía en los currículos de enseñanza secundaria y bachillerato y los programas de I+D existentes auspiciados por el MEC.MadridBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín 5 -3 Planta; 28014 Madrid; Tel. +34917748000; [email protected]
    corecore