64 research outputs found

    Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua)

    Get PDF
    In order to assess the contribution of quiescent degassing volcanoes to the global halo(hydro)carbon inventory, we have quantified volcanic fluxes of methyl halides (CH3Cl, CH3Br, and CH3I), ethyl halides (C2H5Cl, C2H5Br, and C2H5I), and higher chlorinated methanes (CH2Cl2, CHCl3, and CCl4). About every eight months over a 2-year period (July 2001 to July 2003), gas samples were collected and analyzed from high-temperature fumaroles (472°C–776°C) at the Nicaraguan subduction zone volcano Momotombo. Using a simultaneous record of trace and main compounds in fumarolic gases as well as SO2 fluxes of the plume, we were able to calculate halo(hydro)carbon fluxes for Momotombo and extrapolate our results to estimate halo(hydro)carbon fluxes for the whole Quaternary Nicaraguan volcanic arc and, in addition, for all volcanoes globally. The most abundant halohydrocarbon was CH3Cl with concentrations up to 19 ppmv. Further major halo(hydro)carbons were CH3Br, CH3I, CH2Cl2, CHCl3, CCl4, C2H5Cl, C2H5Br, C2H5I, and C2H3Cl with an average concentration of 0.20 to 720 ppbv. Estimated mean halo(hydro)carbon fluxes from Momotombo were in the range of 630–5000 g/yr for methyl halides, 49–260 g/yr for ethyl halides, and 2.4–24 g/yr for higher chlorinated methanes. When the results for Momotombo are scaled up to SO2 fluxes of the Nicaraguan volcanic transect, fluxes of 1.7 × 105 g/yr CH3Cl and 82 g/yr CCl4 are attained for Nicaragua. Scaled up to the estimated global SO2 flux, this translates to hypothetical global fluxes of 5.6 × 106 g/yr CH3Cl and 2.7 × 103 g/yr CCl4. These volcanic fluxes are negligible compared to global anthropogenic and natural emissions of about 3 × 1012 g/yr CH3Cl and 2 × 1010 g/yr CCl4

    The Tolbachik volcanic massif: A review of the petrology, volcanology and eruption history prior to the 2012–2013 eruption

    Full text link

    Random Flow-Induced Oscillations with Impacts of a Set of Coupled Pendulums

    No full text

    Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction

    Get PDF
    The monitoring of the state of active volcanoes, carried out using different parameters, including geochemical, is very important for studies of deep processes and geodynamics. All changes which occur within the crater before eruptions reflect the magma activation and depend on the deep structure of volcano. This paper gives the results of prolonged monitoring of Ebeko volcano, located in the contact zone between the oceanic and continental plates (the Kurile Island Arc). The geochemical method has been used as the basis for eruption prediction because the increase in the activity of the Ebeko in the period from 1963 to 1967 that ended in a phreatic eruption was not preceded by seismic preparation. Investigations carried out at Ebeko volcano give evidence that change of all the chosen geochemical parameters is a prognostic indicator of a forthcoming eruption. This change depends on the type of eruption, and the deep structure and hydrodynamic regime of the volcano
    corecore