163 research outputs found

    Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Get PDF
    Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy

    Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer

    Get PDF
    Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, wherea

    Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    Get PDF
    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation

    Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells From Different Organ Sites

    Get PDF
    3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins

    Five-year analysis from the ESPRIT 10-year postmarketing surveillance registry of adalimumab treatment for moderate to severe psoriasis

    Get PDF
    BackgroundESPRIT is an ongoing, 10-year, observational registry, evaluating long-term safety and effectiveness of adalimumab treatment in routine clinical practice for patients with moderate to severe, chronic plaque psoriasis.ObjectivesInitial 5-year results are reported.MethodsTwo populations were analyzed: the “all-treated” population received 1 or more adalimumab doses in registry, continuing adalimumab treatment from a current prescription or previous study participation, and included the “new-prescription” population initiating adalimumab 4 weeks or earlier preregistry entry.ResultsData were collected from September 26, 2008, through November 30, 2013, for all-treated (n = 6059), which included new-prescription (n = 2580, 42.6%); median registry exposure was 765 and 677 days, respectively. In all-treated, rate (events per 100 patient-years of total adalimumab exposure [E/100PY]) of serious treatment-emergent adverse events (inside or outside of the registry) was 4.3 E/100PY, serious infection 1.0 E/100PY, malignancies 0.9 E/100PY (nonmelanoma skin cancers 0.6 E/100PY; melanomas <0.1 E/100PY). Standardized mortality ratio was 0.30 (95% confidence interval 0.19-0.44). Physician Global Assessment clear or minimal (effectiveness parameter) was achieved by 57.0% at 12 months and 64.7% at 60 months of treatment.LimitationsObservational data are subject to outcome-reporting bias.ConclusionNo new safety signals were observed with adalimumab treatment during this initial 5-year registry review. Observed number of deaths was below expected. As-observed effectiveness remained stable through 60 months

    Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    Get PDF
    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ?40?minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation

    The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: From Laminar to Turbulent Flows

    Get PDF
    We present in this double contribution two different reduced order strategies for incompressible parameterized Navier-Stokes equations characterized by varying Reynolds numbers. The first strategy deals with low Reynolds number (laminar flow) and is based on a stabilized finite element method during the offline stage followed by a Galerkin projection on reduced basis spaces generated by a greedy algorithm. The second methodology is based on a full order finite volume discretization. The latter methodology will be used for flows with moderate to high Reynolds number characterized by turbulent patterns. For the treatment of the mentioned turbulent flows at the reduced order level, a new POD-Galerkin approach is proposed. The new approach takes into consideration the contribution of the eddy viscosity also during the online stage and is based on the use of interpolation. The two methodologies are tested on classic benchmark test cases

    Keratinocyte Apoptosis in Epidermal Remodeling and Clearance of Psoriasis Induced by UV Radiation

    Get PDF
    Psoriasis is a common chronic skin disorder, but the mechanisms involved in the resolution and clearance of plaques remain poorly defined. We investigated the mechanism of action of UVB, which is highly effective in clearing psoriasis and inducing remission, and tested the hypothesis that apoptosis is a key mechanism. To distinguish bystander effects, equal erythemal doses of two UVB wavelengths were compared following in vivo irradiation of psoriatic plaques; one is clinically effective (311 nm) and one has no therapeutic effect on psoriasis (290 nm). Only 311 nm UVB induced significant apoptosis in lesional epidermis, and most apoptotic cells were keratinocytes. To determine clinical relevance, we created a computational model of psoriatic epidermis. Modeling predicted apoptosis would occur in both stem and transit-amplifying cells to account for plaque clearance; this was confirmed and quantified experimentally. The median rate of keratinocyte apoptosis from onset to cell death was 20 minutes. These data were fed back into the model and demonstrated that the observed level of keratinocyte apoptosis was sufficient to explain UVB-induced plaque resolution. Our human studies combined with a systems biology approach demonstrate that keratinocyte apoptosis is a key mechanism in psoriatic plaques clearance, providing the basis for future molecular investigation and therapeutic development

    Risk of Serious Infections in Patients with Psoriasis on Biologic Therapies: A Systematic Review and Meta-Analysis

    Get PDF
    A comprehensive evaluation of the risk of serious infections in biologic therapies for psoriasis is lacking. We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) and prospective cohort studies reporting serious infections in people taking any licensed biologic therapy for psoriasis compared with those taking placebo, nonbiologic therapy, or other biologic therapies. The quality of the studies was assessed using Grading of Recommendations Assessment, Development and Evaluation criteria. No significant heterogeneity was detected in data from 32 RCTs (n = 13,359 participants) and one cohort study (n = 4,993 participants). In adults, low- to very-low-quality RCT data showed no significant difference between any biologic therapy and placebo at weeks 12–16 (overall pooled Peto odds ratio = 0.71, 95% confidence interval = 0.36–1.41) and weeks 20–30 (odds ratio = 2.27, 95% confidence interval = 0.45–11.49). No significant differences were found in any of the other comparisons in underpowered RCT data. Prospective cohort study data of low quality suggests that only adalimumab (adjusted hazard ratio [adjHR] = 2.52, 95% confidence interval = 1.47–4.32) was associated with a significantly higher risk of serious infection compared with retinoid and/or phototherapy in adults. No association between biologic therapies and serious infections in patients with psoriasis who were eligible for RCTs was detected. Further observational studies are needed to inform the uncertainty around this risk in the real world

    N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration

    Get PDF
    Background: non-coding RNAs have been drawing increasing attention in recent years as functional data suggest that they play important roles in key cellular processes. N-BLR is a primate-specific long non-coding RNA that modulates the epithelial-to-mesenchymal transition, facilitates cell migration, and increases colorectal cancer invasion. Results: we performed multivariate analyses of data from two independent cohorts of colorectal cancer patients and show that the abundance of N-BLR is associated with tumor stage, invasion potential, and overall patient survival. Through in vitro and in vivo experiments we found that N-BLR facilitates migration primarily via crosstalk with E-cadherin and ZEB1. We showed that this crosstalk is mediated by a pyknon, a short ~20 nucleotide-long DNA motif contained in the N-BLR transcript and is targeted by members of the miR-200 family. In light of these findings, we used a microarray to investigate the expression patterns of other pyknon-containing genomic loci. We found multiple such loci that are differentially transcribed between healthy and diseased tissues in colorectal cancer and chronic lymphocytic leukemia. Moreover, we identified several new loci whose expression correlates with the colorectal cancer patients' overall survival. Conclusions: the primate-specific N-BLR is a novel molecular contributor to the complex mechanisms that underlie metastasis in colorectal cancer and a potential novel biomarker for this disease. The presence of a functional pyknon within N-BLR and the related finding that many more pyknon-containing genomic loci in the human genome exhibit tissue-specific and disease-specific expression suggests the possibility of an alternative class of biomarkers and therapeutic targets that are primate-specific
    corecore