1,054 research outputs found
Computational and Mathematical Modelling of the EGF Receptor System
This chapter gives an overview of computational and mathematical modelling of the EGF receptor system. It begins with a survey of motivations for producing such models, then describes the main approaches that are taken to carrying out such modelling, viz. differential equations and individual-based modelling. Finally, a number of projects that applying modelling and simulation techniques to various aspects of the EGF receptor system are described
Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos
Phobos Laser Ranging (PLR) is a concept for a space mission designed to
advance tests of relativistic gravity in the solar system. PLR's primary
objective is to measure the curvature of space around the Sun, represented by
the Eddington parameter , with an accuracy of two parts in ,
thereby improving today's best result by two orders of magnitude. Other mission
goals include measurements of the time-rate-of-change of the gravitational
constant, and of the gravitational inverse square law at 1.5 AU
distances--with up to two orders-of-magnitude improvement for each. The science
parameters will be estimated using laser ranging measurements of the distance
between an Earth station and an active laser transponder on Phobos capable of
reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10
ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12
cm aperture will permit links that even at maximum range will exceed a photon
per second. A total measurement precision of 50 ps demands a few hundred
photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser
ranging (SLR) facilities--with appropriate augmentation--may be able to
participate in PLR. Since Phobos' orbital period is about 8 hours, each
observatory is guaranteed visibility of the Phobos instrument every Earth day.
Given the current technology readiness level, PLR could be started in 2011 for
launch in 2016 for 3 years of science operations. We discuss the PLR's science
objectives, instrument, and mission design. We also present the details of
science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
Genetic characterization of morphologically variant strains of Paracoccidioides brasiliensis
Molecular characterization of Paracoccidioides brasiliensis variant strains that had been preserved under mineral oil for decades was carried out by random amplified polymorphic DNA analysis (RAPD). On P. brasiliensis variants in the transitional phase and strains with typical morphology, RAPD produced reproducible polymorphic amplification products that differentiated them. A dendrogram based on the generated RAPD patterns placed the 14 P. brasiliensis strains into five groups with similarity coefficients of 72%. A high correlation between the genotypic and phenotypic characteristics of the strains was observed. A 750 bp-RAPD fragment found only in the wild-type phenotype strains was cloned and sequenced. Genetic similarity analysis using BLASTx suggested that this RAPD marker represents a putative domain of a hypothetical flavin-binding monooxygenase (FMO)-like protein of Neurospora crassa.FiocruzBritish Council Progra
A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli.
Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often
Psychological stress factors and salivary cortisol in nursing students throughout their training
OBJECTIVE: to analyze psychological stress factors and salivary cortisol concentration in nursing undergraduates throughout their training. METHOD: a cross-sectional, analytical, and comparative study carried out in an evening course using a sociodemographic questionnaire, an Instrument to Assess Stress in Nursing Students, and salivary cortisol analysis. The study included descriptive and comparative analyses and a multiple linear regression model. RESULTS: 187 participants answered the questionnaires, and 129 had their cortisol quantified. The domains Practical Activities Execution, Professional Communication, and Professional Training represented the stress factors with the highest mean values for 3rd, 4th, and 5th-year students compared to 1st and 2nd year. For the 5th year, it was the domains Professional Communication and Professional Training compared to the 3rd year and Environment compared to the 1st and 3rd year. A significant result was obtained between the times of cortisol collections for males (p < 0.0001), females (p < 0.0001), and for 1st (p = 0.0319) 2nd (p = 0.0245), and 5th (p < 0.0001) years. CONCLUSION: Students in years 3 through 5 had higher exposure to stressors, and there were adjustments in cortisol production rhythmicity for students in years 1, 2, and 5
Brane-World Gravity
The observable universe could be a 1+3-surface (the "brane") embedded in a
1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model
particles and fields trapped on the brane while gravity is free to access the
bulk. At least one of the \textit{d} extra spatial dimensions could be very
large relative to the Planck scale, which lowers the fundamental gravity scale,
possibly even down to the electroweak ( TeV) level. This revolutionary
picture arises in the framework of recent developments in M theory. The
1+10-dimensional M theory encompasses the known 1+9-dimensional superstring
theories, and is widely considered to be a promising potential route to quantum
gravity. At low energies, gravity is localized at the brane and general
relativity is recovered, but at high energies gravity "leaks" into the bulk,
behaving in a truly higher-dimensional way. This introduces significant changes
to gravitational dynamics and perturbations, with interesting and potentially
testable implications for high-energy astrophysics, black holes, and cosmology.
Brane-world models offer a phenomenological way to test some of the novel
predictions and corrections to general relativity that are implied by M theory.
This review analyzes the geometry, dynamics and perturbations of simple
brane-world models for cosmology and astrophysics, mainly focusing on warped
5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover
the simplest brane-world models in which 4-dimensional gravity on the brane is
modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati
models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004)
"Brane-World Gravity", 119 pages, 28 figures, the update contains new
material on RS perturbations, including full numerical solutions of
gravitational waves and scalar perturbations, on DGP models, and also on 6D
models. A published version in Living Reviews in Relativit
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior
Potential impact of invasive alien species on ecosystem services provided by a tropical forested ecosystem: a case study from Montserrat
Local stakeholders at the important but
vulnerable Centre Hills on Montserrat consider that
the continued presence of feral livestock (particularly
goats and pigs) may lead to widespread replacement of
the reserve’s native vegetation by invasive alien trees
(Java plum and guava), and consequent negative
impacts on native animal species. Since 2009, a
hunting programme to control the feral livestock has
been in operation. However long-term funding is not
assured. Here, we estimate the effect of feral livestock
control on ecosystem services provided by the forest to
evaluate whether the biodiversity conservation rationale
for continuation of the control programme is
supported by an economic case. A new practical tool
(Toolkit for Ecosystem Service Site-based Assessment)
was employed to measure and compare ecosystem
service provision between two states of the
reserve (i.e. presence and absence of feral livestock
control) to estimate the net consequences of the
hunting programme on ecosystem services provided
by the forest. Based on this we estimate that cessation
of feral livestock management would substantially
reduce the net benefits provided by the site, including a
46 % reduction in nature-based tourism (from
228,000) and 36 % reduction in harvested
wild meat (from 132,000). The
overall net benefit generated from annual ecosystem
service flows associated with livestock control in thereserve, minus the management cost, was $214,000
per year. We conclude that continued feral livestock
control is important for maintaining the current level
of ecosystem services provided by the reserve
- …
