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Summary/Abstract: This chapter gives an overview of computational and mathematical 

modelling of the EGF receptor system. It begins with a survey of motivations for 

producing such models, then describes the main approaches that are taken to carrying out 

such modelling, viz. differential equations and individual-based modelling. Finally, a 

number of projects that applying modelling and simulation techniques to various aspects 

of the EGF receptor system are described.  
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1. Introduction 

This paper gives an overview of computational models and simulations of the EGF 

receptor system; it is aimed at biologists who have no experience of such modelling and 

simulation techniques. It begins with a review of motivations for constructing such 

models, then surveys the kinds of models that can be built. Finally, a number of models 

of various parts of the EGF receptor system are described. 

2. Why Model and Simulate? 

By modelling we mean the construction of some computer program or mathematical 

description that describes some aspect of a system. Simulation is the running of a 

computer implementation of that model, i.e. setting parameters in, and the initial state of, 

a model, then modifying the state of that model a number of times to represent the system 

changing in time.  

 

There are a number of motivations for developing such models. At the simplest level, 

models can be used as informal tools to develop intuitions and ideas about the 

functioning of a system. By attempting to build a formal model that incorporates existing 

knowledge about the system, the less-well understood components of the system can 

become clearer; furthermore conjectures can be made, and tested for plausibility, about 

mechanisms that might explain those components. This process is, in general, referred to 

as synthetic biology. That is, it is an attempt to gain an understanding of a system by 

building it.  
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However, such a model cannot confirm anything positive about a system. Typically, it 

will be used to inspire further experimental work, by providing a prima facie case that 

some experiment might produce results of interest. Another function of such a system is 

to demonstrate that a particular mechanism cannot explain a particular behaviour, by 

showing that an implementation of that mechanism in simulation produces different 

behaviour (either at a qualitative or quantitative level) to an observed system.  

 

More formally, models can be used to integrate together a number of aspects of a system 

that are individually well-understood, yet where the interactions between those aspects 

are not. In such an approach, we build a number of computer programs or mathematical 

systems, each of which describes the individually well-understood subsystem and which 

has inputs and outputs that allow it to interact with other components of the system. 

Provided that such models are complete, and that their inclusion in a wider system does 

not produce additional effects or ill-understood non-linear interactions, such a system can 

produce accurate predictions about the behaviour of the system. Such an approach, 

however, is limited by our lack of such complete understanding of many biological 

systems (this is a situation which contrasts, for example, with models in physics, where 

many subsystems are well-understood). 

 

More rigorous uses of modelling and simulation will attempt to combine the model with 

experimental or observational data. In such an approach, the model typically represents a 

hypothesis about how the system works. Typically, a hypothesis is tested by ‘bringing the 

data to the hypothesis’; that is, data is measured, or transformed, so that it can be directly 
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compared with the hypothesis. Simulation can ‘take the hypothesis’ (part of the way) to 

the data”. A model is constructed, based on a hypothesis about the functioning of the 

system, and this model is then simulated by implementing it as a computer program and 

measuring those aspects of the simulation that correspond to the experimental data. These 

measurements can be compared to the experimental or observational data. 

 

There are a number of issues with this approach, two of which we shall explore. The first 

is that a typical model will have unknown parameters, which can affect both the 

qualitative and quantitative results that are measured. One approach to this issue is to use 

parameter fitting where the model is viewed as a parameterised space of models, and 

some optimization technique used to find a (heuristically) optimal setting for those 

parameters that maximises fit with the data.  One side benefit of this is that it gives an 

estimate for those parameters as part of the process; however, it should be noted that for 

many model/dataset pairs, many different possible parameter sets can give rise to 

behaviour compatible with the data. 

 

A final view of such models is that they represent hypothesis-driven combinations of 

attributes, which can be used as inputs to systems for prediction and classification 

problems. Typically, a statistical/computational model for prediction is produced by a 

supervised learning technique [Mitchell]. That is, we have a set of experimental or 

observational data, including one attribute of the system that we would like to be able to 

predict in the future (referred to as the class). For example, a medical dataset might 

consist of a list of patients: for each patient a list of symptoms is recorded, and an expert 
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diagnosis carried out. Supervised learning is any technique that takes such a dataset and 

produces a statistical/computational model that will make a prediction of the class; well 

known examples are naïve Bayes methods (see e.g. [2]) and decision tree induction [3]. 

In our example, the model would take a list of symptoms and make a diagnosis.  

 

Typically, such systems work using the raw data as inputs to the training process, that is, 

the process by which a generic predictive model is adjusted to generalise from the 

particular set of data being used. However, in some situations, constructed attributes can 

be used: that is, attributes from the data are combined to form new data attributes [4]. 

Typically, such constructions are simple and based on a basic search process for useful 

combinations. One way to view simulations is as hypothesis-driven attribute construction 

methods; that is, a simulation provides a new source of data for making predictions about 

a model, which is based on some hypothesis about the functioning of the system. In such 

a situation the final test of value is simply whether the addition of the new data source 

from the simulation adds to the accuracy of the simulation, measured on a previously 

unseen set of test data. 

3. Methods for Modelling and Simulation 

There are a number of methods for modelling and simulating cellular systems. In this 

section we discuss the various methods, focusing on differential equation-based and 

individual-based methods. 
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3.1 Differential Equation Methods 

One approach is to develop a set of differential equations that describe the system [5,6]. 

That is, the various interactions and reactions between entities in the system are described 

in terms of rates of exchange between different quantities (a classic example is the 

Michaelis-Menten equation for enzyme kinetics [7]). In such a system, when an amount 

of some substance is transformed in some way, the quantity of the original substance is 

reduced and that of the outcome of the transformation increased. So, for example, a 

phosphorylation event on molecule X would consist of reducing the amount of X in the 

system, and increasing the amount of phosphorylated-X. 

 

This is a powerful approach to modelling the basic levels of each substance of interest, 

and it has an advantage over some other methods in that many methods exist to get some 

analytic understanding of the problem (i.e. to understand some general properties and 

overall dynamics of the system) as well as to simulate it for a particular set of parameters 

and initial conditions.  

 

However, there are disadvantages to this kind of modelling. In particular, there are issues 

concerned with scaling and with representing space. Differential equation models 

provide a succinct summary of the interactions between a small number of molecule-

types. However, when a system contains many types of molecules, accounting for the 

different types whilst retaining a comprehensible model eventually becomes intractable. 

In terms of spatial distribution, differential equation models are better used when dealing 

with a small number of components where the free-mixing assumption can be made (i.e. 
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that any molecule can interact with any other). In systems where genuine spatial 

distribution is important, this can be modelled by partial differential equations; however, 

dealing with complex interactions between different molecule types across a space is 

difficult, and many of the mathematical techniques for getting a qualitative understanding 

of the model break down in such situations.  

3.2 Individual Based Methods 

The second main approach to modelling is individual-based modelling. In such a model, 

each entity in the system is represented by a separate entity in the computer; this contrasts 

with differential equation models, which keep track of aggregate counts of objects over 

time. This has a number of advantages: two of particular significance are that models of 

systems with many different kinds of components can be readily built, and that a full 

spatial model can be readily incorporated. 

 

In order to generate such a model, four aspects of the system need to be specified. Firstly, 

a list of the kinds of entities found in the system needs to be compiled. For a cell-biology 

model, these will typically be lists of molecules found in the system. Secondly, the kinds 

of interactions between those entities needs to be defined: most importantly, if two 

entities meet, do they bind? With what probability? Thirdly, the movement of the entities 

is defined: for example, Brownian motion, or flow through a region at a certain rate. 

Finally, a set of initial conditions needs to be specified. 

 

Commonly, not all of the information required to set up such a model is known in 

advance. As a result, a typical “model” is not a single model, but a parameterised space 
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of possible models: i.e. there are a number of unknown parameters in the model, and 

setting these parameters to a particular value specifies a particular model. Sometimes, 

such models can be used as part of a process to estimate the unknown parameters. For 

example, a model might represent a process that is too small to observe directly 

experimentally; however, this process might give rise to a phenomenon that can be 

directly observed. By finding a parameter setting within that space of models that 

reproduces the observed behaviour, we can conclude that the parameters (which will 

include properties of the unobservable behaviour) are a feasible set of parameters for the 

real system. 

 

Typically, this search through the parameter space will be carried out using some 

optimization heuristic [8], which will search for values of the parameters that maximize 

the fit between experimentally observable features of the system in simulation and in 

reality.  

 

An alternative approach is to use qualitative reasoning methods [9,10]. This approach 

consists of running a simulation using qualitative features about the objects in the 

simulation, rather than particular values: is a quantity positive or negative, is a 

relationship proportional, negative-proportional, threshold, et cetera? This can give a 

broad understanding of a model, even in the absence of concrete parameter settings. 

4. Implementing Individual Based Methods 

Individual based methods are typically implemented using an object-oriented 

programming technique [11] such as Java or C++. In order to create a program in such a 
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language, the programmer first creates types of objects known as classes, specifying the 

information that is stored within an object of that class and how objects of that class 

interact with other objects. The simulation then progresses by the creation and interaction 

of individual objects, each of which belongs to (and has its behaviour defined by) one of 

the classes. There are a number of different ways in which to manage the interactions 

between these objects; therefore the programmer of a simulation has to make a number of 

choices, before writing the simulation program. 

 

The first of these decisions is whether the model will be implemented in an event-based 

or timestep-based fashion. An event-based simulation [12] is one where the program 

maintains a list of events that change the state of the system, and the simulation is carried 

out by processing an event (such as an interaction between two molecules), calculating 

whether this generates any new events (e.g. a molecule dissociating from a complex, 

which might lead to a new interaction for that molecule), and then moving forward in 

time to the next event. This works well for systems where the “next event” can be readily 

calculated. However, in many biochemical models, this calculation is not easy due to 

processes such as Brownian motion, which can rapidly introduce a new potential 

interaction where there was none before. As a result, timestep-based methods, which 

move in a regular timestep and calculate all activity within that timestep, are commonly 

used in such situations. 

 

A second decision is the level of detail that the model will use. Different 

questions/hypotheses will require different levels of detail in the model. Ultimately, the 
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model needs to be a useful abstraction from reality—incorporating those features that are 

needed for the question at hand, whilst ignoring features that are irrelevant. There are also 

practical concerns in the decision. In particular, very detailed models can be time 

consuming to compute (up to the point where computation might be infeasible), or else 

not admit the kind of analytical techniques that can be used on simpler models. 

 

A third decision is whether the calculations will be stochastic (i.e. incorporating some 

randomness in the events) or deterministic. Given that all models at the cellular level will 

have some element of randomness in them when viewed at that level (Brownian motion 

and probability of two molecules binding being two examples), the stochastic modelling 

approach seems immediately more appropriate. However, when many objects are 

interacting, these individual interactions are often somewhat irrelevant. Instead, these 

large numbers of random events can be approximated by a deterministic rate of 

occurrence. Stochastic models are of most interest when the individual actions of 

molecules that exist in small numbers can have significant consequences for the system 

as a whole, as discussed by Andrews and Bray [13] and Lemerle et al. [14]. 

 

A final decision concerns how space is handled within the model. The simplest model of 

space is to assume that all of the components of the system interact within a single space: 

this is referred to as complete mixing. The next simplest model is that there are a number 

of components in the model (for example, within and outwith the cell) with some 

communication or exchange going on between these components, representing exchange 

of molecules between the domains or communication through transmembrane proteins. 
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Beyond this, we can develop models that have a spatial position for each component of 

the system: either represented as an approximation on a grid, or as a position given by 

decimal-number coordinates. This level of detail is important for some models (for 

example, studying the structure of receptor clusters or the formation of signalling 

complexes); however, for other models the complete mixing assumption is sufficient. 

5. Examples of Simulations 

Computational and mathematical models have been used for understanding a number of 

aspects of the EGF receptor system. Most simulations have concentrated on aspects of the 

intracellular signalling cascade; however, other approaches have addressed the 

oligomerisation behaviour on the cell surface.  As note by Gullick et al. [15,16], there are 

three main processes in the EGF receptor system. Firstly, the liganding of the 

extracellular domain, secondly, the dimerisation and oligomerisation of these receptors, 

and finally the intracellular signalling cascade set off by this dimerisation. The majority 

of effort in this area has focused on the intracellular signalling cascade, using differential 

equation models. This is where we begin our survey. Later in this section we discuss 

models of the cell-surface behaviour, integrated models that examine multiple stages, and 

systems that introduce formal languages for the description of interactions and which 

make steps toward integrating models into broader systems biology projects. 

5.1 Differential Equation Models of Intracellular Signalling Cascades 

The largest amount of work on simulation of the EGF receptor system has focused on 

differential equation models of the intracellular signalling cascade. These have been 

surveyed by Wiley et al. [17] and Orton et al. [18].  
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The core of such a model is a list of the various proteins involved in the signalling 

process, and a list of differential equations that specify the reaction rates between these 

proteins. These models are then simulated by the used of a numerical method, either from 

a generic mathematical software package such as Mathematica [19] or Matlab [20], or by 

software specifically designed for sets of biochemical interactions such as Gepasi [21]. 

 

The main parameters in such models are rate constants for the various reactions in the 

system. Typically these are derived from existing experimental work; if they are missing, 

a sensitivity analysis can sometimes be performed to check whether or not the particular 

value of the parameter is having a significant impact on the phenomenon of interest. 

 

A typical “experiment” using such a model will be to develop a model which introduces 

some new mechanism or interaction which, it is hypothesised, produces a particular 

experimentally-observed behaviour and therefore produces a viable hypothesis to explain 

the mechanism underlying that behaviour. In the remainder of this section we give a 

number of examples of such models. 

 

A detailed example of such a model is given by Suresh Babu et al. [22]. This paper 

begins by detailing a set of differential equations that represent the various reactions in 

the system. At the end of this process a parameterised space of models has been created, 

where the parameters represent the various rate constants for the reactions in the model. 

They then realise a particular model by inserting rate constants found in the literature. 
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They then test the accuracy of the model by a number of comparisons between 

experimental and computational work: plotting time-courses of Raf, MEK and ERK 

activation levels and comparing the latter two against Western blot analyses of wet lab 

experiments with the same setup; studying the effects of over-expression of proteins in 

the model and comparisons with known experimental effects of overexpression; studying 

time courses of phosphorylation and dephosphorylation; and, carrying out a sensitivity 

analysis of the system. This work shows that an accurate model of the cascade can be 

produced; however, they do not apply their simulation to testing any specific new 

hypotheses about the functioning of the system. 

 

One example of the application of computational methods to a specific problem in their 

area is the work of Brightman and Fell [23]. This paper describes a model of the MAP 

kinase cascade using the simulation system Gepasi [21], and applies this to form 

hypotheses for the difference in behaviour when the cascade is stimulated by EGF (in this 

case, the cascade is activated for a short time) and by NGF (in which case the cascade is 

stimulated for a sustained period of time). The simulation is used to narrow down where 

in the system a change will produce the effects seen in experimental work. In particular, 

it is shown that mechanisms that simply affect the intensity of signalling at the cell 

surface, or mechanisms that influence the phosphatase activity in the cascade are unlikely 

to produce the differences in effect observed in the experimental system. By contrast, 

their simulation of variations in the negative feedback regulation in the cascade do 

demonstrate a variety of differences in cascade persistence consistent with the 
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experimental observations. Therefore, they conclude that this final mechanism is the most 

likely candidate mechanism to explain the differences. 

 

Hendriks et al. [24] also apply simulations to help make a differentiation between two 

competing hypotheses to explain a particular observed phenomenon. The phenomenon is 

the localisation of dephosphorylation activity in the ErbB-triggered signalling cascade. 

They simulate two hypotheses concerning this: the first, that the activity is localised in 

the cell surface plasma membrane; the second, that intracellular, endosomal regions are 

the focus for it. By comparing these simulations against experimental data, they show 

that the former localisation is more likely to explain the observed phenomenon. 

 

Shvartsmann et al. [25] use a simulation to show that a proposed hypothesis is sufficient 

to explain an experimentally observed phenomenon. The phenomenon in question is the 

development of a single-peaked input into a pattern with two peaks; this is needed to 

show how the development of paired organs during development occurs. The 

computational model shows the ranges of parameters that would be required to generate 

the phenomenon in question: this could be seen as refinement of an initial qualitative 

hypothesis into more quantitative terms. Maly et al. [26] also carry out a simulation 

focused on feasibility. They demonstrate that a particular arrangements of feedback loops 

in an autocrine signalling system is capable of generating and maintaining cell polarity. 

5.2 Other Modelling Methods for the Intracellular Signalling Cascade 

Techniques other than differential equations have been used to model the signalling 

cascade. For example, Hlavacek et al. [27] have developed a system called BioGenNet 
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that is based on lists of rewriting rules: that is, rules that describe how parts of one 

structure can be transformed into another. This allows hierarchies of reaction rules to be 

created, rather than needing to specify each rule individually, as in the differential 

equation-based systems discussed above. In addition, such systems of rules permit new 

analytic methods such as model checking, which is a system for checking whether a set of 

rules is consistent with a formal description of how parts of a system will change with 

time.  

 

Blinov et al. [28] apply similar methods to reproduce and extend the earlier model of 

Kholodenko et al. [29], incorporating a larger number of reactions including proteins not 

incorporated into the Kholodenko model. 

 

Another method that has been used to model the signalling cascade is Petri nets [30]. 

This is a visually intuitive way of constructing and simulating systems, which can be 

readily visualised whilst the simulation is running. 

 

Schamel and Dick [31] have proposed an analogy between the signal transduction 

process and the Parallel Distributed Processing model used in modelling neural networks. 

However, this remains at the conceptual level rather than representing a way to 

implement simulations.  

 

An alternative approach to modelling is given by Pawson and Linding [32]. This takes an 

approach sometimes known as a synthetic biology approach to the problem. In this 
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approach, signalling networks are reverse engineered from known components. By 

carrying out such a reconstruction, the developer of the simulation is required to think 

carefully about the functional role of each of the components, and therefore develops a 

better understanding of the role that each component plays and the possible ways in 

which they can interact. 

6. Modelling Behaviour on the Cell Surface in the EGF Receptor System 

The process of dimerisation and higher-level clustering of EGF receptors on the cell 

surface is the subject of a paper by Goldman et al [33]. This consists of an object-oriented 

individual-based model, where receptors move under Brownian motion on a model of the 

cell surface, are able to be liganded, and which form clusters by binding with other 

receptors using a probabilistic model with parameters that can be specified by the user.  

 

A model using similar techniques has been developed to model the diffusion of ligands in 

the intercellular medium, and thus help to understand juxtacrine and paracrine signalling 

[34]. 
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6.1 Modelling the Overall System 

Recently, attempts have been made to combine models of various aspects of the system. 

For example, Hendriks et al. [35] have developed a differential equation model that 

combines a model of dimerisation of liganded receptors with a model of the consequent 

intracellular signalling cascade. This has been applied to model hypotheses concerning 

differences in the behaviour between ErbB1 receptors that are sensitive to the drug 

getfitinib (IRESSA), and those which are not. 

6.2 Higher Level Models for Intracellular Signalling Cascades 

Each piece of work described so far has consisted of a single modelling technique being 

applied to some particular problem. Recent papers by Calder et al. [18,36] takes a 

different approach. The approach taken is to describe the MAP kinase cascade in a 

mathematical language known as a process algebra. This is a formal description of the 

various interactions within the system. This high-level description can be automatically 

converted into both a deterministic, differential equation based system which can be 

simulated using numerical methods, and automatically converted into a stochastic model 

which can be simulated using an individual-based model. If the model is robust, both of 

these techniques should produce a similar outcome; however, sometimes artefacts from 

the particular simulation/numerical analysis method used can distort the solution.  

 

Calder et al. [36] use a comparison between the two models, derived from the process 

algebra description, to show such an artefact in the earlier paper of Schoberl et al. [37], 

which underestimates the peak concentration of Ras-GTP in the system by a factor of 

two.  
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Descriptions such as the process algebra have two main advantages. Firstly, they can be 

automatically converted into simulations of different types, thus showing up problems 

with a particular simulation technique for a particular problem. Secondly, they have the 

potential advantage that models can be analysed for qualitative features, as well as being 

converted into executable models. Some general issues concerned with models of this 

kind are discussed by Kolch et al. [38]. 

6.3 Integration with Larger System Biology Software Systems 

It has been noted by Hornberg et al. [39] that cancer is a canonical systems biology 

disease: if we want to understand cancer, we need to understand how information flows 

between many different parallel systems of chemical interactions. Other discussions of 

the impact of systems biology on signal transduction, are given by Citri and Yarden [40] 

and Suresh Babu et al. [41]. In recent years, attempts have been made to create software 

and description languages that allow the sharing and combining of models of biochemical 

systems. One of the most important of these languages is the Systems Biology Markup 

Language (SBML) [42]. The aim of this is to provide a common set of formal notation 

for the recording of diagrams of biochemical interactions, so that models can be shared 

between different software packages and combined into larger integrated models (for 

example the E-Cell project [43]). 

 

Recently, some early efforts have been made to give an SBML description of the EGF 

receptor system and its associated signalling cascade [44]. A more general discussion of 

this kind of notation is given by Kitano [45], Blinov [28], and Cary et al. [46]. 
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High-throughput techniques, such as microarrays, for data collection are often associated 

with systems biology approaches as they can provide the detailed data needed to 

complete a systems biology model. Studies such as that of Jones et al. [47] show how 

large scale protein networks can be studied and reaction rates quantified, which provide 

valuable input for simulations. 

7 Prospects 

Mathematical and computational models have proven useful in testing various hypotheses 

about the functioning of the EGF receptor system, and in providing a precise language for 

the expression of such hypotheses. In the future, we can see four new important 

directions for work of this type: 

• The use of such methods in combination with data gained from experiment. 

• The integration of these models into a wider set of tools for systems biology, 

leading to the integration of multiple models. 

• The use of languages to describe these systems that can be realised in a number of 

different ways, and have a number of different analytical tools applied to them. 

• The simulation of the activity of drugs on the system; and the use of 

computational search techniques to discover new targets for drug discovery (as 

illustrated by the work of Haugh et al. [48]). 

 

Breitling and Hoeller [49] also discuss future directions for such models. They outline 

four main directions for future applications of modelling of the EGF system: modelling 

of endosomal compartmentalisation, developing more sophisticated models of the protein 



 21 

interaction network, spatial modelling, and including feedback loops and crosstalk in 

models. 
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