9 research outputs found

    Chapter 5: Food Security

    Get PDF
    The current food system (production, transport, processing, packaging, storage, retail, consumption, loss and waste) feeds the great majority of world population and supports the livelihoods of over 1 billion people. Since 1961, food supply per capita has increased more than 30%, accompanied by greater use of nitrogen fertilisers (increase of about 800%) and water resources for irrigation (increase of more than 100%). However, an estimated 821 million people are currently undernourished, 151 million children under five are stunted, 613 million women and girls aged 15 to 49 suffer from iron deficiency, and 2 billion adults are overweight or obese. The food system is under pressure from non-climate stressors (e.g., population and income growth, demand for animal-sourced products), and from climate change. These climate and non-climate stresses are impacting the four pillars of food security (availability, access, utilisation, and stability)

    Identificación de riesgos geoambientales y su valoración en la zona de hundimiento del buque Prestige

    Get PDF
    Potential geological hazard assessment has been carried out in the area where the Prestige vessel was sunk using a broad database that comprises: multibeam, high and ultra-high resolution seismic profiles, gravity cores, onland seismicity stations and Ocean Bottom Seismometers (OBS). The main results of this study indicate that among the geologic factors that can be considered as potential hazards, four main categories can be differentiated based on their origin: morphologic, sedimentary, tectonic, and seismicity. Hazards of morphologic origin include steep gradients; the morphologic features suggest the occurrence of mass-wasting instabilities. Hazards of sedimentary origin also includes the occurrence of slope instability processes in form of single slides and a great variety of erosive and depositional gravity flows (debris and turbidity flows). Hazards of tectonic and seismic origin are important because the sinking area straddles the Calida Bank which is a structural seamount with a moderate tectonic activity that results in a latent seismicity of low to moderate magnitude. The interaction of these factors leads to consider to the risk as medium, and the degree of exposure of the bow and stern as high. Several general and specific recommendations are made in order to increase the geological and geophysics knowledgement in the Prestige sinking area and Spanish continental margins and deep sea areas. These recommendations also should be used to elaborate the options for reducing the hazard and loss

    Vacuum ultraviolet photoabsorption spectroscopy of space-related ices: 1 keV electron irradiation of nitrogen- and oxygen-rich ices

    Get PDF
    Context. Molecular oxygen, nitrogen, and ozone have been detected on some satellites of Saturn and Jupiter, as well as on comets. They are also expected to be present in ice-grain mantles within star-forming regions. The continuous energetic processing of icy objects in the Solar System induces physical and chemical changes within the ice. Laboratory experiments that simulate energetic processing (ions, photons, and electrons) of ices are therefore essential for interpreting and directing future astronomical observations. Aims. We provide vacuum ultraviolet (VUV) photoabsorption spectroscopic data of energetically processed nitrogen- and oxygen-rich ices that will help to identify absorption bands and/or spectral slopes observed on icy objects in the Solar System and on ice-grain mantles of the interstellar medium. Methods. We present VUV photoabsorption spectra of frozen O2 and N2, a 1:1 mixture of both, and a new systematic set of pure and mixed nitrogen oxide ices. Spectra were obtained at 22 K before and after 1 keV electron bombardment of the ice sample. Ices were then annealed to higher temperatures to study their thermal evolution. In addition, Fourier-transform infrared spectroscopy was used as a secondary probe of molecular synthesis to better identify the physical and chemical processes at play. Results. Our VUV data show that ozone and the azide radical (N3) are observed in our experiments after electron irradiation of pure O2 and N2 ices, respectively. Energetic processing of an O2:N2 = 1:1 ice mixture leads to the formation of ozone along with a series of nitrogen oxides. The electron irradiation of solid nitrogen oxides, pure and in mixtures, induces the formation of new species such as O2, N2, and other nitrogen oxides not present in the initial ice. Results are discussed here in light of their relevance to various astrophysical environments. Finally, we show that VUV spectra of solid NO2 and water can reproduce the observational VUV profile of the cold surface of Enceladus, Dione, and Rhea, strongly suggesting the presence of nitrogen oxides on the surface of the icy Saturn moons
    corecore