104 research outputs found

    Colorectal cancer carcinogenesis

    Full text link
    El cáncer colorrectal representó en el año 2008 el tercer tumor más diagnosticado en España, siendo la segunda neoplasia que causó más fallecimientos. El conocimiento del proceso carcinogenético de este tipo de enfermedad permitirá el descubrimiento de nuevas terapéuticas que conlleven menores tasas de incidencia y mortalidad. El continuo avance en la enfermedad tumoral hace que esta revisión sea una puesta al día en el conocimiento de la carcinogénesis del cáncer colorrectalIn 2008, colorectal cancer represented the third most commonly diagnosed tumor in Spain, and the second tumor that caused more deaths. Knowledge of the carcinogenetic process of this disease will allow the discovery of new therapies involving lower rates of incidence and mortality. The continuous progress in tumor disease makes this review an update on the knowledge of colorectal cancer carcinogenesi

    Variabilidad radiológica de la artroplastia de cadera, según la dominancia del cirujano

    Get PDF
    El objetivo de este trabajo es analizar la relación entre la dominancia de los cirujanos ortopédicos y el correcto posicionamiento del componente acetabular en las artroplastias totales de cadera. Secundariamente, se analiza la posible relación entre esta dominancia del cirujano y la lateralidad del procedimiento quirúrgico a realizar ya sean caderas derechas o izquierdas. Para ello, se crearon 2 grupos. El grupo A correspondiente a 20 caderas intervenidas por un cirujano de dominancia diestra y el grupo B formado por 20 intervenciones realizadas por otro cirujano de dominancia zurda Las mediciones se realizaron sobre la proyección radiográfica AP de pelvis del control postquirúrgico usando el visor de rayos del hospital. Para la valoración de la anteversión se utilizó el método descrito por Widmer. Con este trabajo hemos demostrado una mayor dificultad para la correcta implantación del cotilo por parte de nuestro cirujano zurdo en el caso de intervenir caderas izquierdas

    Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope

    Get PDF
    Altres ajuts: Funding This work was supported by the Obra Social La Caixa (LCF/PR/HR19/52160011), the Spanish Cancer Association and Leo Messi Foundation to PM.Background There are few therapeutic options available for patients with B-cell acute lymphoblastic leukemia (B-ALL) relapsing as CD19 - either after chemotherapy or CD19-targeted immunotherapies. CD22-chimeric antigen receptor (CAR) T cells represent an attractive addition to CD19-CAR T cell therapy because they will target both CD22 + CD19 - B-ALL relapses and CD19 - preleukemic cells. However, the immune escape mechanisms from CD22-CAR T cells, and the potential contribution of the epitope binding of the anti-CD22 single-chain variable fragment (scFv) remain understudied. Methods Here, we have developed and comprehensively characterized a novel CD22-CAR (clone hCD22.7) targeting a membrane-distal CD22 epitope and tested its cytotoxic effects against B-ALL cells both in in vitro and in vivo assays. Results Conformational epitope mapping, cross-blocking, and molecular docking assays revealed that the hCD22.7 scFv is a high-affinity binding antibody which specifically binds to the ESTKDGKVP sequence, located in the Ig-like V-type domain, the most distal domain of CD22. We observed efficient killing of B-ALL cells in vitro, although the kinetics were dependent on the level of CD22 expression. Importantly, we show an efficient in vivo control of patients with B-ALL derived xenografts with diverse aggressiveness, coupled to long-term hCD22.7-CAR T cell persistence. Remaining leukemic cells at sacrifice maintained full expression of CD22, ruling out CAR pressure-mediated antigen loss. Finally, the immunogenicity capacity of this hCD22.7-scFv was very similar to that of other CD22 scFv previously used in adoptive T cell therapy. Conclusions We report a novel, high-affinity hCD22.7 scFv which targets a membrane-distal epitope of CD22. 4-1BB-based hCD22.7-CAR T cells efficiently eliminate clinically relevant B- CD22 high and CD22 low ALL primary samples in vitro and in vivo. Our study supports the clinical translation of this hCD22.7-CAR as either single or tandem CD22-CD19-CAR for both naive and anti-CD19-resistant patients with B-ALL

    Challenge 2: From genes & circuits to behavior

    Get PDF
    Understanding the brain from genes and circuits to behavior is a major scientific challenge. The large repertoire of cell activities supporting behavior stems from an equally diverse range of specialized cell types, from neuron to glia. To untangle mechanisms underlying brain function, elementary processes should be dissected, from the complex machinery of signaling pathways at the level of single cells and synapses, to the intricate phenomena leading to orchestrated ensemble activity and the establishment of engrams driving memory-guided behaviors. In this chapter we identify the main key tasks required to address some of the open questions in the field, and discuss on the main issues and strategies

    CD133-directed CAR T-cells for MLL Leukemia: On-Target, Off-Tumor Myeloablative Toxicity

    Get PDF
    Acknowledgements: We thank the Interfant treatment protocol and local physicians for contributing patient samples: Dr. Ronald W Stam (Princess Maxima Centre, Utrech), Dr. Mireia Camos and Dr. Jose Luis Fuster (Spanish Society of Pediatric Hematoncology), Dr. Paola Ballerini (A. Trousseau Hospital, Paris). We also thank Prof. Paresh Vyas (Oxford Univeristy, UK) and Prof. Kajsa Paulsson (Lund University, Sweden) for facilitating access to their RNA-seq database. This work has been supported by the European Research Council (CoG-2014-646903, PoC-2018-811220) to PM, the Spanish Ministry of Economy and Competitiveness (MINECO, SAF-SAF2016-80481-R, BIO2017-85364-R) to PM and EE, the Generalitat de Catalunya (SGR330, SGR102 and PERIS) to PM and EE, the Spanish Association against cancer (AECC-CI-2015) to CB, and the Health Institute Carlos III (ISCIII/FEDER, PI14-01191) to CB. PM also acknowledges financial support from the Obra Social La Caixa-Fundaciò Josep Carreras. SRZ and TV are supported by a Marie Curie fellowships. OM is supported by the Catalan Government through a Beatriu de Pinos fellowship. MB is supported by MINECO through a PhD scholarship. PM is an investigator of the Spanish Cell Therapy cooperative network (TERCEL)

    In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells

    Get PDF
    This work was supported by CaixaImpulse (CI18-00017;FuGe) to S.R-P. RT-R. is supported by a postdoctoral fellowship from the Asociación Española Contra el Cáncer (AECC). J.C.S. is supported by the Spanish Cell Therapy cooperative research network (TERCEL)(RD16/0011/0011). P.M. also acknowledges the financial support from the Obra Social La Caixa-Fundaciò Josep Carreras. P.M. is an investigator of the Spanish Cell Therapy cooperative research network (TERCEL). A.M.C. acknowledges funding fromXarxa de Bancs de Tumors de Catalunya (XBTC; sponsored by Pla Director d'Oncologia de Catalunya).Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells

    NG2 antigen is a therapeutic target for MLL-rearranged B-cell acute lymphoblastic leukemia

    Get PDF
    Altres ajuts: This work has been supported by the Asociación Española Contra el Cáncer (AECC), Beca FERO, and OM are supported by postdoctoral fellowships from the AECC scientific foundation and the Catalunya Government (Beatriu de Pinos, BP00048), respectively. PM also acknowledges the financial support from the Obra Social La Caixa-Fundaciò Josep Carreras and "Premio Miguelín".B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer, with cure rates of ∼80%. MLL-rearranged (MLLr) B-ALL (MLLr-B-ALL) has, however, an unfavorable prognosis with common therapy refractoriness and early relapse, and therefore new therapeutic targets are needed for relapsed/refractory MLLr-B-ALL. MLLr leukemias are characterized by the specific expression of chondroitin sulfate proteoglycan-4, also known as neuron-glial antigen-2 (NG2). NG2 was recently shown involved in leukemia invasiveness and central nervous system infiltration in MLLr-B-ALL, and correlated with lower event-free survival (EFS). We here hypothesized that blocking NG2 may synergize with established induction therapy for B-ALL based on vincristine, glucocorticoids, and l-asparaginase (VxL). Using robust patient-derived xenograft (PDX) models, we found that NG2 is crucial for MLLr-B-ALL engraftment upon intravenous (i.v.) transplantation. In vivo blockade of NG2 using either chondroitinase-ABC or an anti-NG2-specific monoclonal antibody (MoAb) resulted in a significant mobilization of MLLr-B-ALL blasts from bone marrow (BM) to peripheral blood (PB) as demonstrated by cytometric and 3D confocal imaging analysis. When combined with either NG2 antagonist, VxL treatment achieved higher rates of complete remission, and consequently higher EFS and delayed time to relapse. Mechanistically, anti-NG2 MoAb induces neither antibody-dependent cell-mediated not complement-dependent cytotoxicity. NG2 blockade rather overrides BM stroma-mediated chemoprotection through PB mobilization of MLLr-B-ALL blasts, thus becoming more accessible to chemotherapy. We provide a proof of concept for NG2 as a therapeutic target for MLLr-B-ALL

    Daratumumab displays in vitro and in vivo anti-tumor activity in models of B-cell non-Hodgkin lymphoma and improves responses to standard chemo-immunotherapy regimens

    Get PDF
    Altres ajuts: This work was carried out at the Esther Koplowitz Center, Barcelona. Genmab and Janssen pharmaceuticals funded this research. Additional grants that contributed to this work included: [...], and CIBERONC (CB16/12/00334 and CB16/12/00225).CD38 is expressed in several types of non-Hodgkin lymphoma (NHL) and constitutes a promising target for antibody-based therapy. Daratumumab (Darzalex) is a first-in-class anti-CD38 antibody approved for the treatment of relapsed/refractory (R/R) multiple myeloma (MM). It has also demonstrated clinical activity in Waldenström macroglobulinaemia and amyloidosis. Here, we have evaluated the activity and mechanism of action of daratumumab in preclinical in vitro and in vivo models of mantle cell lymphoma (MCL), follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL), as monotherapy or in combination with standard chemo-immunotherapy. In vitro, daratumumab engages Fc-mediated cytotoxicity by antibody-dependent cell cytotoxicity and antibody-dependent cell phagocytosis in all lymphoma subtypes. In the presence of human serum, complement-dependent cell cytotoxicity was marginally engaged. We demonstrated by Selective Plane Illumination Microscopy that daratumumab fully penetrated a three-dimensional (3D) lymphoma organoid and decreased organoid volume. In vivo, daratumumab completely prevents tumor outgrowth in models of MCL and FL, and shows comparable activity to rituximab in a disseminated in vivo model of blastic MCL. Moreover, daratumumab improves overall survival (OS) in a mouse model of transformed CD20 FL, where rituximab showed limited activity. Daratumumab potentiates the antitumor activity of CHOP and R-CHOP in MCL and FL xenografts. Furthermore, in a patient-derived DLBCL xenograft model, daratumumab anti-tumor activity was comparable to R-CHOP and the addition of daratumumab to either CHOP or R-CHOP led to full tumor regression. In summary, daratumumab constitutes a novel therapeutic opportunity in certain scenarios and these results warrant further clinical development

    Distinctive Expression and Amplification of Genes at 11q13 in Relation to HPV Status with Impact on Survival in Head and Neck Cancer Patients

    Get PDF
    Clear differences have been established between head and neck squamous cell carcinomas (HNSCC) depending on human papillomavirus (HPV) infection status. This study specifically investigated the status of the CTTN, CCND1 and ANO1 genes mapping at the 11q13 amplicon in relation to the HPV status in HNSCC patients. CTTN, CCND1 and ANO1 protein expression and gene amplification were respectively analyzed by immunohistochemistry and real-time PCR in a homogeneous cohort of 392 surgically treated HNSCC patients. The results were further confirmed using an independent cohort of 279 HNSCC patients from The Cancer Genome Atlas (TCGA). The impact on patient survival was also evaluated. CTTN, CCND1 and ANO1 gene amplification and protein expression were frequent in HPV-negative tumors, while absent or rare in HPV-positive tumors. Using an independent validation cohort of 279 HNSCC patients, we consistently found that these three genes were frequently co-amplified (28%) and overexpressed (39-46%) in HPV-negative tumors, whereas almost absent in HPV-positive tumors. Remarkably, these alterations (in particular CTTN and ANO1 overexpression) were associated with poor prognosis. Taken together, the distinctive expression and amplification of these genes could cooperatively contribute to the differences in prognosis and clinical outcome between HPV-positive and HPV-negative tumors. These findings could serve as the basis to design more personalized therapeutic strategies for HNSCC patients
    corecore