421 research outputs found

    Influence of respiratory syncytial virus strain differences on pathogenesis and immunity

    Get PDF
    Molecular epidemiology studies have provided convincing evidence of antigenic and sequence variability among respiratory syncytial virus (RSV) isolates. Circulating viruses have been classified into two antigenic groups (A and B) that correlate with well-delineated genetic groups. Most sequence and antigenic differences (both inter- and intra-groups) accumulate in two hypervariable segments of the G-protein gene. Sequences of the G gene have been used for phylogenetic analyses. These studies have shown a worldwide distribution of RSV strains with both local and global replacement of dominant viruses with time. Although data are still limited, there is evidence that strain variation may contribute to differences in pathogenicity. In addition, there is some but limited evidence that RSV variation may be, at least partially, immune (antibody) driven. However, there is the paradox in RSV that, in contrast to other viruses (e.g., influenza viruses) the epitopes recognized by the most effective RSV-neutralizing antibodies are highly conserved. In contrast, antibodies that recognize strain-specific epitopes are poorly neutralizing. It is likely that this apparent contradiction is due to the lack of a comprehensive knowledge of the duration and specificities of the human antibody response against RSV antigens. Since there are some data supporting a group- (or clade-) specific antibody response after a primary infection in humans, it may be wise to consider the incorporation of strains representative of groups A and B (or their antigens) in future RSV vaccine development.Work in the Madrid laboratory is currently funded by grants GR09/0039 from Instituto de Salud Carlos III and SAF2009-11632 and SAF2012-31217 from Plan Nacional de I+D+i. Work in the Atlanta laboratory is supported by the following grants: NIH 1R01AI087798 and NIH 1U19AI095227.S

    On geodesic and monophonic convexity

    Get PDF
    In this paper we deal with two types of graph convexities, which are the most natural path convexities in a graph and which are defined by a system P of paths in a connected graph G: the geodesic convexity (also called metric convexity) which arises when we consider shortest paths, and the monophonic convexity (also called minimal path convexity) when we consider chordless paths. First, we present a realization theorem proving, that there is no general relationship between monophonic and geodetic hull sets. Second, we study the contour of a graph, showing that the contour must be monophonic. Finally, we consider the so-called edge Steiner sets. We prove that every edge Steiner set is edge monophonic.Ministerio de Ciencia y TecnologíaFondo Europeo de Desarrollo RegionalGeneralitat de Cataluny

    Rapid vascularization of starchâ poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts

    Get PDF
    The successful integration of in vitro-generated tissues is dependent on adequate vascularization in vivo. Human outgrowth endothelial cells (OECs) isolated from the mononuclear cell fraction of peripheral blood represent a potent population of circulating endothelial progenitors that could provide a cell source for rapid anastomosis and scaffold vascularization. Our previous work with these cells in co-culture with primary human osteoblasts has demonstrated their potential to form perfused vascular structures within a starch–poly(caprolactone) biomaterial in vivo. In the present study, we demonstrate the ability of OECs to form perfused vascular structures as early as 48 h following subcutaneous implantation of the biomaterial in vivo. The number of OECderived vessels increased throughout the study, an effect that was independent of the OEC donor. This finding of rapid and thorough OEC-mediated scaffold vascularization demonstrates the great potential for OEC-based strategies to promote vascularization in tissue engineering. OECs have the potential to contribute to host-derived scaffold vascularization, and formed vascular structures at a similar density as those arising from the host. Additionally, immunohistochemical evidence demonstrated the close interaction between OECs and the co-cultured osteoblasts. In addition to the known paracrine activity osteoblasts have in modulating angiogenesis of co-cultured OECs, we demonstrate the potential of osteoblasts to provide additional structural support for OEC-derived vessels, perhaps acting in a pericyte-like role.The authors would like to thank Mrs B Pavic and Mrs U. Hilbig for their excellent technical assistance. This work was financially supported by grants from the European Commission (EXPERTISSUES Contract No. 500283-2) and the German Federal Ministry of Education and Research, BMBF (German-Chinese Cooperation in Regenerative Medicine; Contract No. 0315033)

    Análisis de la productividad en los Centros Sanitarios de la Comunidad de Madrid (España) 2015-2017

    Get PDF
    The main objective of this work has focused on extending the existing literature on the analysis of total factor productivity of the Health Care Centers (HCC) of the Community of Madrid (Spain) in the period 2015-2017, with two important contributions; the application and comparison of the Malmquist indices with two robust methodologies such as the Hicks-Moorsteen and Färe Primont indices which, except for error, have not been previously used in this sector and the regional scope, which has been scarcely analyzed. The main results reveal decreases in HC productivity due to the three proposed methodologies. These decreases range between 4.90% and 0.25% for the Färe-Primont and Hicks-Moorsteen indices respectively between 2015/17 in average terms. Convergence analyses confirm that this takes place in the case of the Malmquist and Hicks-Moorsteen proposals.El objetivo principal de este trabajo se ha enfocado en extender la literatura existente sobre el análisis de la productividad total de los factores, de los Centros Sanitarios de la Comunidad de Madrid en el periodo 2015-2017, con dos importantes contribuciones, la aplicación y comparación de los índices de Malmquist con dos metodologías robustas, los índices de Hicks-Moorsteen y Färe Primont que salvo error no han sido previamente utilizadas en este sector y el ámbito regional, que ha sido escasamente analizado. Los principales resultados revelan disminuciones de la productividad de los CS por las tres metodologías propuestas. Estas disminuciones oscilan entre 4.90% y 0.25% para los índices de Färe-Primont y de Hicks-Moorsteen respectivamente entre 2015/17 en términos medios. Los análisis de convergencia confirman que esta tiene lugar en el caso de las propuestas de Malmquist y Hicks-Moorsteen

    Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis

    Get PDF
    [Background and Purpose]: Recombinant IFN‐ß is one of the first‐line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose‐derived MSCs (AdMSCs), transduced with the IFN‐β gene, into mice with experimental autoimmune encephalomyelitis (EAE).[Experimental Approach]: Relapsing–remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively.[Key Results]: Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN‐ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro‐inflammation.[Conclusion and Implications]: Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN‐β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN‐ß treatment, by providing long‐term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose‐limiting side effects.This work was supported by Fondo de Investigaciones Sanitarias ISCIII (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) from the European Union through the research grants PI12/01097 and PI15/00963 and ISCIII Red de Terapia Celular TerCel RD12/0019/0006 to F.M., by the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía‐FEDER/Fondo de Cohesion Europeo (FSE) de Andalucía through the research grants P09‐CTS‐04532, PI‐57069 and PAIDI‐Bio‐326 to F.M. and PI‐0160/2012 to K.B. M.J.P.‐M. has been supported by grants from Red Temática de Investigación Cooperativa Red Española de Esclerosis Múltiple REEM (RD07/0060 and RD12/0032). B.O. is financed by a contract from Excelent Project CTS‐7670/11 from Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía)

    CD44 Modulates Cell Migration and Invasion in Ewing Sarcoma Cells

    Get PDF
    The chimeric EWSR1::FLI1 transcription factor is the main oncogenic event in Ewing sarcoma. Recently, it has been proposed that EWSR1::FLI1 levels can fluctuate in Ewing sarcoma cells, giving rise to two cell populations. EWSR1::FLI1low cells present a migratory and invasive phenotype, while EWSR1::FLI1high cells are more proliferative. In this work, we described how the CD44 standard isoform (CD44s), a transmembrane protein involved in cell adhesion and migration, is overexpressed in the EWSR1::FLI1low phenotype. The functional characterization of CD44s (proliferation, clonogenicity, migration, and invasion ability) was performed in three doxycycline-inducible Ewing sarcoma cell models (A673, MHH-ES1, and CADO-ES1). As a result, CD44s expression reduced cell proliferation in all the cell lines tested without affecting clonogenicity. Additionally, CD44s increased cell migration in A673 and MHH-ES1, without effects in CADO-ES1. As hyaluronan is the main ligand of CD44s, its effect on migration ability was also assessed, showing that high molecular weight hyaluronic acid (HMW-HA) blocked cell migration while low molecular weight hyaluronic acid (LMW-HA) increased it. Invasion ability was correlated with CD44 expression in A673 and MHH-ES1 cell lines. CD44s, upregulated upon EWSR1::FLI1 knockdown, regulates cell migration and invasion in Ewing sarcoma cells.This project was funded by Instituto de Salud Carlos III, grant numbers PI20CIII/00020, DTS18CIII/00005, Asociación Pablo Ugarte, grant numbers TRPV205/18; Asociación Candela Riera, Asociación Todos Somos Iván & Fundación Sonrisa de Alex, grant numbers TVP333-19, TVP-1324/15; ASION, grant number TVP141/17. Enrique Fernández-Tabanera is supported by Asociación Candela Riera, Asociación Todos Somos Iván & Fundación Sonrisa de Alex, Saint T. Cervera is supported by Asociación Pablo Ugarte and Raquel M. Melero is supported by a CIBERER contract.S

    Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis

    Get PDF
    Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b+ macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to overexpress ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b+ macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages

    Endothelial Progenitors: A Consensus Statement on Nomenclature

    Get PDF
    Endothelial progenitor cell (EPC) nomenclature remains ambiguous and there is a general lack of concordance in the stem cell field with many distinct cell subtypes continually grouped under the term “EPC.” It would be highly advantageous to agree on standards to confirm an endothelial progenitor phenotype and this should include detailed immunophenotyping, potency assays, and clear separation from hematopoietic angiogenic cells which are not endothelial progenitors. In this review, we seek to discourage the indiscriminate use of “EPCs,” and instead propose precise terminology based on defining cellular phenotype and function. Endothelial colony forming cells and myeloid angiogenic cells are examples of two distinct and well‐defined cell types that have been considered EPCs because they both promote vascular repair, albeit by completely different mechanisms of action. It is acknowledged that scientific nomenclature should be a dynamic process driven by technological and conceptual advances; ergo the ongoing “EPC” nomenclature ought not to be permanent and should become more precise in the light of strong scientific evidence. This is especially important as these cells become recognized for their role in vascular repair in health and disease and, in some cases, progress toward use in cell therapy. Stem Cells Translational Medicine 2017;6:1316–132

    Assessing the Permeability of Engineered Capillary Networks in a 3D Culture

    Get PDF
    Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs) that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs) or adipose-derived stem cells (AdSCs), much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal cell identity influences the functionality and physiologic relevance of engineered capillary networks

    Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study

    Get PDF
    Background: Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods: Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results: In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions: Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals.This work was supported by the Strategic Action for Research in Health sciences [CP12/03080, PI15/00071, PI10/0082, PI13/01848, PI14/00874, PI16/01402, PI21/00506 and PI11/00726], CIBER Fisio patología Obesidad y Nutrición (CIBEROBN) (CIBER-02-08-2009, CB06/03 and CB12/03/30,016), the State Agency for Research (PID2019-108973RB- C21 and C22), the Valencia Government (GRUPOS 03/101; PROMETEO/2009/029 and ACOMP/2013/039, IDI FEDER/2021/072 and GRISOLIAP/2021/119), the Castilla-Leon Government (GRS/279/A/08) and European Network of Excellence Ingenious Hypercare (EPSS-037093) from the European Commission. The Strategic Action for Research in Health sciences, CIBERDEM and CIBEROBN are initiatives from Carlos III Health Institute Madrid and cofunded with European Funds for Regional Development (FEDER). The State Agency for Research and Carlos III Health Institute belong to the Spanish Ministry of Science and Innovation. ADR received the support of a fellowship from “la Caixa” Foundation (ID 100010434) (fellowship code “LCF/BQ/DR19/11740016”). MGP received the support of a fellowship from “la Caixa” Foundation (ID 100010434, fellowship code LCFLCF/BQ/DI18/11660001). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.S
    corecore