CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Efficient in vivo vascularization of tissue-engineering scaffolds
Authors
Adams
Alajati
+47 more
Au
Beck
Benjamin
Black
Black
Carmeliet
Darland
Darland
Davis
Evensen
Evensen
Freeman
Gaengel
Garlanda
Gerhardt
Gjerdrum
Gray
Greenberg
Hall
Hellstrom
Holland
Jain
Jenkins
Kaully
Koike
Korff
Kutcher
Lazarous
McDonald
Melero-Martin
Melero-Martin
Muschler
Nguyen
Nor
Ohnuma
Ozawa
Patterson
Rasband
Sanz
Schechner
Shepherd
Silverthorn
Swift
Von Degenfeld
Wenger
Wilkinson-Berka
Yun Chen
Publication date
1 April 2011
Publisher
'Wiley'
Doi
View
on
PubMed
Abstract
The success of tissue engineering depends on the rapid and efficient formation of a functional blood vasculature. Adult blood vessels comprise endothelial cells and perivascular mural cells that assemble into patent tubules ensheathed by a basement membrane during angiogenesis. Using individual vessel components, we characterized intra-scaffold microvessel self-assembly efficiency in a physiological in vivo tissue engineering implant context. Primary human microvascular endothelial and vascular smooth muscle cells were seeded at different ratios in poly- L -lactic acid (PLLA) scaffolds enriched with basement membrane proteins (Matrigel) and implanted subcutaneously into immunocompromised mice. Temporal intra-scaffold microvessel formation, anastomosis and perfusion were monitored by immunohistochemical, flow cytometric and in vivo multiphoton fluorescence microscopy analysis. Vascularization in the tissue-engineering context was strongly enhanced in implants seeded with a complete complement of blood vessel components: human microvascular endothelial and vascular smooth muscle cells in vivo assembled a patent microvasculature within Matrigel-enriched PLLA scaffolds that anastomosed with the host circulation during the first week of implantation. Multiphoton fluorescence angiographic analysis of the intra-scaffold microcirculation showed a uniform, branched microvascular network. 3D image reconstruction analysis of human pulmonary artery smooth muscle cell (hPASMC) distribution within vascularized implants was non-random and displayed a preferential perivascular localization. Hence, efficient microvessel self-assembly, anastomosis and establishment of a functional microvasculture in the native hypoxic in vivo tissue engineering context is promoted by providing a complete set of vascular components. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83466/1/336_ftp.pd
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1002%2Fterm.336
Last time updated on 02/01/2020
Deep Blue Documents
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:deepblue.lib.umich.edu:202...
Last time updated on 25/05/2012