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Abstract

In this paper we deal with two types of graph convexities, which are the most natural path convexities in a graph
and which are defined by a system P of paths in a connected graph G: the geodesic convexity (also called metric
convexity) which arises when we consider shortest paths, and the monophonic convexity (also called minimal path
convexity) when we consider chordless paths. First, we present a realization theorem proving, that there is no
general relationship between monophonic and geodetic hull sets. Second, we study the contour of a graph, showing
that the contour must be monophonic. Finally, we consider the so-called edge Steiner sets. We prove that every
edge Steiner set is edge monophonic.

1. Introduction

A convexity on a finite set V is a family C of
subsets of V , to be regarded as convex sets, which is
closed under intersection and which contains both
V and the empty set. The pair (V, C) is called a
convexity space. A finite graph-convexity space is
a pair (G, C), formed by a finite connected graph
G = (V,E) and a convexity C on V such that (V, C)
is a convexity space satisfying that every member
of C induces a connected subgraph of G [4,5]. Thus,
classical convexity can be extended to graphs in a
natural way. We know that a set X of R

n is convex
if every segment joining two points of X is entirely
contained in it. Similarly, a vertex set W of a finite
connected graph G is said to be a convex set of G
if it contains all the vertices lying in a certain kind
of path connecting vertices of W .

In this paper we deal with two types of graph
convexities, which are the most natural path con-
vexities in a graph and which are defined by a
system P of paths in G: the geodesic convexity
(also called metric convexity) [5,6,7,11] which
arises when we consider shortest paths, and the
monophonic convexity (also called minimal path
convexity) [4,5] when we consider chordless paths.

1 Partially supported by projects MCYT-FEDER TIC-
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In what follows, G = (V,E) denotes a finite con-
nected graph with no loops or multiple edges. The
distance d(u, v) between two vertices u and v is the
length of a shortest u − v path in G. A chord of a
path u0u1 . . . uh is an edge uiuj , with j ≥ i + 2. A
u − v path ρ is called monophonic if it is a chord-
less path, and geodesic if it is a shortest u−v path,
that is, if |E(ρ)| = d(u, v).

The geodesic closed interval I[u, v] is the set of
vertices of all u−v geodesics. Similarly, the mono-
phonic closed interval J [u, v] is the set of vertices
of all monophonic u − v paths. For W ⊆ V , the
geodesic closure I[W ] of W is defined as the union
of all geodesic closed intervals I[u, v] over all pairs
u, v ∈ W . The monophonic closure J [W ] is the set
formed by the union of all monophonic closed in-
tervals J [u, v].

A vertex set W ⊆ V is called geodesically convex
(or simply g-convex ) if I[W ] = W , while it is said
to be geodetic if I[W ] = V . Likewise, W is called
monophonically convex (or simply m-convex ) if
J [W ] = W , and is called monophonic if J [W ] =
V . The smallest g-convex set containing W is de-
noted [W ]g and is called the g-convex hull of W .
Similarly, the m-convex hull [W ]m of W is defined
as the minimum m-convex set containing W . Ob-
serve that J [W ] ⊆ [W ]m, I[W ] ⊆ [W ]g and [W ]g ⊆
[W ]m. A g-hull (m-hull) set of G is a vertex set W
satisfying [W ]g = V ([W ]m = V ).
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For a nonempty set W ⊆ V , a connected sub-
graph of G with the minimum number of edges
that contains all of W must be clearly a tree. Such
a tree is called a Steiner W -tree. The Steiner in-
terval S(W ) of W consists of all vertices that lie
on some Steiner W -tree. If S(W ) = V , then W is
called a Steiner set for G [3].

The monophonic (m-hull, geodetic, g-hull, Stei-
ner, respectively) number of G, denoted by mn(G)
(mhn(G), gn(G), ghn(G), st(G), respectively) is
the minimum cardinality of a monophonic (m-hull,
geodetic, g-hull, Steiner, respectively) set in G.
Clearly, ghn(G) ≤ gn(G), since every geodetic set
is a g-hull set. In [7] the authors showed that, apart
from the previous one, no other general relation-
ship among the parameters ghn(G), gn(G) and
st(G) exists. In Section 2, we approach the same
problem by replacing the parameter st(G) by both
mhn(G) and mn(G).

In Section 3, we examine a number of mono-
phonic convexity issues involving three types of
vertices: contour, peripheral and extreme ver-
tices [2]. We prove, among other facts, that the
contour of a graph is monophonic. It is interest-
ing to notice that this kind of results are closely
related to the graph reconstruction problem, in
the sense that we want to obtain all the vertices
of a graph by considering a certain kind of paths
joining vertices of a fixed set W .

In [3], it was shown that every Steiner set in G
is also geodetic. Unfortunately, this particular re-
sult turned out to be wrong and was disproved by
Pelayo [10]. In [7], the authors proved that every
Steiner set is monophonic. As a consequence, they
immediately derived that, in the class of distance-
hereditary graphs (i.e., those graphs for which
every monophonic path is a geodesic [8]), every
Steiner set is geodetic. They also approached the
problem of determining for which classes of chordal
graphs (i.e., without induced cycles of length
greater than 3) every Steiner set is geodetic, prov-
ing this statement to be true both for Ptolemaic
graphs (i.e, distance-hereditary chordal graphs [5])
and interval graphs (i.e., chordal graphs without
induced asteroid triples [9]). In Section 4, we focus
our attention on the edges of geodesic and mono-
phonic paths, approaching the same problems and
obtaining similar results.

2. Monophonic and geodetic parameters

Let us review the main definitions involved in
this section. A vertex set W ⊆ V is a g-hull set
if its g-convex hull [W ]g covers all the graph, i.e.,
if [W ]g = V . Moreover, W is called geodetic if
I[W ] = V . The g-hull number ghn(G) of G is de-
fined as the minimum cardinality of a hull set. The
geodetic number gn(G) of G is the minimum car-
dinality of a geodetic set [6]. Certainly, ghn(G) ≤
gn(G).

Although it has been shown that determining
the geodetic number and the hull number of a
graph is a NP -hard problem [6], it is rather simple
to obtain these two parameters for a wide range of
classes of graphs as paths, cycles, trees, (bipartite)
complete graphs, wheels and hypercubes.

A vertex set W ⊆ V is a m-hull set if [W ]m = V .
Moreover, W is called monophonic if J [W ] = V .
The m-hull number mhn(G) of G is the minimum
cardinality of a m-hull set. The monophonic num-
ber mn(G) of G is the minimum cardinality of a
monophonic set. Certainly, mhn(G) ≤ mn(G) ≤
gn(G) and mhn(G) ≤ ghn(G), since every mono-
phonic set is a m-hull set, every geodetic set is
monophonic, and every g-hull set is a m-hull set.
Nevertheless, it is not true that every g-hull set be
monophonic. For example, if we consider the com-
plete bipartite graph K3,3, with V1 = {a, b, c} and
V2 = {e, f, g}, it is easy to see that the set W =
{a, b} satisfies [W ]g = V and J [W ] = V r {c}.

At this point, what remains to be done is to
ask the following question: Is there any other gen-
eral relationship among the parameters mhn(G),
mn(G), ghn(G) and gn(G), apart from the previ-
ous known inequalities?

The next realization theorem shows that, unless
we restrict ourselves to a specific class of graphs,
the answer is negative.

Theorem 1 For any integers a, b, c, d such that
3 ≤ a ≤ b ≤ c ≤ d, there exists a connected graph
G = (V,E) satisfying one of the following condi-
tions:

(i) a = mhn(G), b = mn(G), c = ghn(G) and
d = gn(G),

(ii) a = mnh(G), b = ghn(G), c = mn(G) and
d = gn(G).
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3. Contour, peripheral and extreme
vertices

Given a connected graph G = (V,E), the eccen-
tricity of a vertex u ∈ V is defined as ecc

G
(u) =

ecc(u) = max{d(u, v)|v ∈ V }. Hence, the diameter
D of G can be defined as the maximum eccentricity
of the vertices in G. The periphery of G, denoted
Per(G), is the set of vertices that have maximum
eccentricity, i.e., the set of the so-called peripheral
vertices. A vertex v is said to be simplicial in G if
the subgraph induced by its neighborhood N(v) is
a clique. The extreme set of G, denoted Ext(G), is
the set of all its simplicial vertices. With the aim
of generalizing these two definitions, the so-called
contour of G was introduced in [2] as follows. A
vertex u ∈ W is said to be a contour vertex of W
if ecc

W
(u) ≥ ecc

W
(v), for all v ∈ N(u) ∩ W . The

contour Ct(W ) of W is the set formed by all the
contour vertices of W . If W = V , this set is called
the contour of G and it is denoted Ct(G). Notice
that Per(G) ∪ Ext(G) ⊆ Ct(G).

Remark. We have examples of graphs showing
that there is no general relationship between pe-
ripheral and extreme vertices.

Let W ⊆ V be a m-convex (g-convex) set and
let F = 〈W 〉

G
be the subgraph of G induced by W .

A vertex v ∈ W is called an m-extreme vertex (g-
extreme vertex ) of W if W r {v} is a m-convex (g-
convex) set. A vertex v of a m-convex (g-convex)
set W is a m-extreme (g-extreme) vertex of W if
and only if v is simplicial in F [5].

A convexity space (V, C) is a convex geometry if
it satisfies the so-called Minkowsky-Krein-Milman
property: Every convex set is the convex hull of its
extreme vertices. Notice that this condition allows
us to rebuild every convex set from its extreme ver-
tices, by using the convex hull operator. Farber and
Jamison [5] proved that the monophonic (geodesic)
convexity of a graph G is a convex geometry if and
only if G is chordal (Ptolemaic). Cáceres et al. [2]
obtained a similar property to the previous one,
valid for every graph, by considering, instead of the
extreme vertices, the contour vertices.

Theorem 2 [2] Let G = (V,E) be a connected
graph and W ⊆ V a g-convex set. Then, W is the
g-convex hull of its contour vertices.

As was pointed out in [2], the contour of a graph
needs not to be geodetic. Nevertheless, we prove
this assertion to be true in the following case.

Proposition 3 If Ct(G) = Per(G), then Ct(G)
is a geodetic set.

PROOF. Let x be a vertex of V (G) r Ct(G).
Since the eccentricities of two adjacent vertices dif-
fer by at most one unit, if x is not a contour ver-
tex, then there exists a vertex y ∈ V , adjacent
to x, such that its eccentricity satisfies ecc(y) =
ecc(x)+1. This fact implies the existence of a path
ρ(x)= x0x1x2 . . . xr, such that x = x0, xi /∈ Ct(G)
for i ∈ {0, . . . , r − 1}, xr ∈ Ct(G), and ecc(xi) =
ecc(xi−1) + 1 = l + i for i ∈ {1, . . . , r}, where l =
ecc(x). Moreover, ρ(x) is a shortest x − xr path,
since otherwise, the eccentricity of xr would be less
than l + r. But xr ∈ Ct(G) = Per(G) implies that
ecc(xr) = D and D = l + r. Thus, there exists
a vertex z ∈ Per(G) such that D = d(z, xr) ≤
d(z, x)+d(x, xr) ≤ ecc(x)+r = l+r = D, that is,
d(z, xr) = d(z, x)+d(x, xr). Hence, x is on a short-
est path between the vertices z, xr ∈ Per(G) =
Ct(G).

As a consequence of this result, we have the fol-
lowing corollary.

Corollary 4 If Ct(G) has exactly two vertices,
Ct(G) is a geodetic set.

Now, we approach the same issues by considering
the monophonic convexity.

Theorem 5 The contour of any connected graph
G is a monophonic set.

Corollary 6 Let G be a connected graph and let
W ⊆ V be a m-convex set. Then, every vertex of W
lies on a monophonic path joining contour vertices
of W .

PROOF. Let F = 〈W 〉
G

be the subgraph of G
induced by W , and let Ω be the set of contour
vertices of W . Certainly, Ω = Ct(F ). Hence, the
previous statement is equivalent to saying that the
contour of F is a monophonic set.

Corollary 7 Let G be a connected graph and let
W ⊆ V be a m-convex set. Then, W is the m-
convex hull of its contour vertices.

Finally, we show another consequence of Theo-
rem 5, which was directly proved in [2].

Corollary 8 The contour of a distance-hereditary
graph is a geodetic set.
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4. The edge Steiner problem

In this section, we focus our attention on the
edges that lie in paths joining two vertices of G =
(V,E). We define the edge intervals of a graph as
follows. The edge geodetic closed interval Ie[u, v] is
the set of edges of all u − v geodesics. Similarly,
the edge monophonic closed interval Je[u, v] is the
set of vertices of all monophonic u − v paths. For
W ⊆ V , the edge geodetic closure Ie[W ] of W is
the union of all edge closed intervals Ie[u, v] over
all pairs u, v ∈ W . The edge monophonic closure,
Je[W ], is defined as the union of all edge closed
monophonic intervals over all pairs u, v ∈ W . In
other words, we have

Ie[W ] =
⋃

u,v∈W

Ie[u, v], Je[W ] =
⋃

u,v∈W

Je[u, v].

A vertex set W for which Je[W ] = E is called
an edge monophonic set. Similarly, W is an edge
geodetic set if Ie[W ] = E [1]. A set W ⊆ V is an
edge Steiner set if the edges lying in some Steiner
W -tree cover E. Notice that: (1) every edge Steiner
set is a Steiner set, (2) every edge geodetic set is
geodetic, (3) every edge monophonic set is mono-
phonic, and (4) every edge geodetic set is an edge
monophonic set. It is easy to find examples where
the converses of these statements are not true. We
have obtained the following results.

Theorem 9 Every edge Steiner set of a connected
graph is an edge monophonic set.

Corollary 10 In the class of connected distance-
hereditary graph, every edge Steiner set is an edge
geodetic set.

Analogously to the vertex case, this last result
also holds for interval graphs. First, we need to
prove the following lemma.

Lemma 11 (i) If P is a x−y walk in G, any vertex
of W is adjacent to at least a vertex of V (P ). (ii) If
TW is a Steiner W -tree, for any u ∈ V (TW ) r W ,
u lies in the unique x − y path of TW . Moreover,
there exists a Steiner W -tree, T ∗

W , formed by the
unique x−y path of TW and vertices of W adjacent
to vertices of that path.

Theorem 12 In the class of connected interval
graphs, every edge Steiner set is an edge geodetic
set.

In the preceding section we have seen that the
contour of a graph is a monophonic set. Neverthe-

less, it is quite easy to find graphs whose contour
is not an edge monophonic set.

It remains an open question the problem of char-
acterizing those classes of chordal graphs for which
every edge Steiner set is edge geodetic. We know
this statement to be true for interval and Ptolemaic
graphs, and false for split graphs (i.e., those chordal
graphs whose complementary is also chordal).
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