10 research outputs found

    Human-relevant concentrations of the antifungal drug clotrimazole disrupt maternal and fetal steroid hormone profiles in rats

    Get PDF
    Clotrimazole is a non-prescription and broad-spectrum antifungal drug sold under brand names such as Canesten® and Lotrimin®. It is used to treat different types of fungal infections, from oral thrush to athlete's foot and vaginal mycosis. The level of exposure to clotrimazole is uncertain, as the exact usage amongst self-medicating patients is unclear. Recent studies have raised potential concern about the unsupervised use of clotrimazole during pregnancy, especially since it is a potent inhibitor of CYP enzymes of the steroidogenesis pathway. To address some of these concerns, we have assessed the effects of intrauterine exposure to clotrimazole on developing rat fetuses. By exposing pregnant rats to clotrimazole 25 or 75 mg/kg bw/day during gestation days 7–21, we obtained internal fetal concentrations close to those observed in humans. These in vivo data are in strong agreement with our physiologically-based pharmacokinetic (PBK)-modelled levels. At these doses, we observed no obvious morphological changes to the reproductive system, nor shorter male anogenital distance; a well-established morphometric marker for anti-androgenic effects in male offspring. However, steroid hormone profiles were significantly affected in both maternal and fetal plasma, in particular pronounced suppression of estrogens was seen. In fetal testes, marked up-concentration of hydroxyprogesterone was observed, which indicates a specific action on steroidogenesis. Since systemic clotrimazole is rapidly metabolized in humans, relevant exposure levels may not in itself cause adverse changes to the reproductive systems. Its capacity to significantly alter steroid hormone concentrations, however, suggests that clotrimazole should be used with caution during pregnancy.Danish Environmental Protection Agenc

    Toward a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny – part I: which parameters from human studies are most relevant for toxicological assessments?

    No full text
    The 2018 European Food Safety Authority/European Chemicals Agency Guidance on the Identification of Endocrine Disruptors lacks clarity on how the presence or absence of substance-induced maternal thyroid hormone imbalance, or the potential for subsequent deleterious consequences in child neurodevelopment, should be established by toxicological assessments. To address these uncertainties, this narrative review evaluates human evidence on how altered maternal thyroid function may be associated with child neurodevelopmental outcomes; and seeks to identify parameters in human studies that appear most relevant for toxicological assessments. Serum levels of free thyroxine (fT4) and thyroid stimulating hormone (TSH) are most frequently measured when assessing thyroid function in pregnant women, whereas a broad spectrum of neurodevelopmental parameters is used to evaluate child neurodevelopment. The human data confirms an association between altered maternal serum fT4 and/or TSH and increased risk for child neurodevelopmental impairment. Quantitative boundaries of effects indicative of increased risks need to be established. Moreover, it is unknown if altered serum levels of total T4, free or total triiodothyronine, or parameters unrelated to serum thyroid hormones might be more relevant indicators of such effects. None of the human studies established a link between substance-mediated liver enzyme induction and increased serum thyroid hormone clearance, let alone further to child neurodevelopmental impairment. This review identifies research needs to contribute to the development of toxicity testing strategies, to reliably predict whether substances have the potential to impair child neurodevelopment via maternal thyroid hormone imbalance

    Toward a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part I: which parameters from human studies are most relevant for toxicological assessments?

    No full text
    The 2018 European Food Safety Authority/European Chemicals Agency Guidance on the Identification of Endocrine Disruptors lacks clarity on how the presence or absence of substance-induced maternal thyroid hormone imbalance, or the potential for subsequent deleterious consequences in child neurodevelopment, should be established by toxicological assessments. To address these uncertainties, this narrative review evaluates human evidence on how altered maternal thyroid function may be associated with child neurodevelopmental outcomes; and seeks to identify parameters in human studies that appear most relevant for toxicological assessments. Serum levels of free thyroxine (fT4) and thyroid stimulating hormone (TSH) are most frequently measured when assessing thyroid function in pregnant women, whereas a broad spectrum of neurodevelopmental parameters is used to evaluate child neurodevelopment. The human data confirms an association between altered maternal serum fT4 and/or TSH and increased risk for child neurodevelopmental impairment. Quantitative boundaries of effects indicative of increased risks need to be established. Moreover, it is unknown if altered serum levels of total T4, free or total triiodothyronine, or parameters unrelated to serum thyroid hormones might be more relevant indicators of such effects. None of the human studies established a link between substance-mediated liver enzyme induction and increased serum thyroid hormone clearance, let alone further to child neurodevelopmental impairment. This review identifies research needs to contribute to the development of toxicity testing strategies, to reliably predict whether substances have the potential to impair child neurodevelopment via maternal thyroid hormone imbalance

    Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny—part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects?

    No full text
    This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.</p

    Health related guide values for drinking-water since 1993 as guidance to assess presence of new analytes in drinking-water

    No full text
    corecore