25 research outputs found

    Dessins, their delta-matroids and partial duals

    Full text link
    Given a map M\mathcal M on a connected and closed orientable surface, the delta-matroid of M\mathcal M is a combinatorial object associated to M\mathcal M which captures some topological information of the embedding. We explore how delta-matroids associated to dessins d'enfants behave under the action of the absolute Galois group. Twists of delta-matroids are considered as well; they correspond to the recently introduced operation of partial duality of maps. Furthermore, we prove that every map has a partial dual defined over its field of moduli. A relationship between dessins, partial duals and tropical curves arising from the cartography groups of dessins is observed as well.Comment: 34 pages, 20 figures. Accepted for publication in the SIGMAP14 Conference Proceeding

    Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genome-wide DNA Methylation Profiling.

    Get PDF
    Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK-) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK- ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.G.E. was funded by the Austrian Science Foundation (FWF) (P 27616 and V 102). M.R.H. was supported by a L’OrĂ©al for Women in Science grant. S.D.T. receives funding from Bloodwise (formerly Leukaemia and Lymphoma Research). L.K. has been funded by the FWF (P 26011 and P 29251), as well as the MSCA-ITN-2015-ETN ALKATRAS (No. 675712). D.J.W. is a paid consultant for Zymo Research Corporation.This is the final version of the article. It first appeared from Elsevier (Cell Press) via http://dx.doi.org/10.1016/j.celrep.2016.09.01

    Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E–150°W)

    Get PDF
    Iron, phosphate and nitrate are essential nutrients for phytoplankton growth and hence their supply into the surface ocean controls oceanic primary production. Here, we present a GEOTRACES zonal section (GP13; 30-33oS, 153oE-150oW) extending eastwards from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≀0.2 nmol L-1 (170oW-150oW). The supply of dissolved iron into the upper ocean (<100m) from the atmosphere and vertical diffusivity averaged 11 ±10 nmol m-2 d-1. In the remote South Pacific Ocean (170oW-150oW) atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface-water nitrate concentrations averaged 5 ±4 nmol L-1 between 170oW and 150oW whilst surface-water phosphate concentrations averaged 58 ±30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 ÎŒmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux, in remote South Pacific waters. The deep water N:P ratio averaged 16 ±3 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production

    STAT3 regulated ARF expression suppresses prostate cancer metastasis.

    Get PDF
    Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.Lukas Kenner and Jan Pencik are supported by FWF, P26011 and the Genome Research-Austria project “Inflammobiota” grants. Helmut Dolznig is supported by the Herzfelder Family Foundation and the Niederösterr. Forschungs-und Bildungsges.m.b.H (nfb). Richard Moriggl is supported by grant SFB-F2807 and SFB-F4707 from the Austrian Science Fund (FWF), Ali Moazzami is supported by Infrastructure for biosciences-Strategic fund, SciLifeLab and Formas, Zoran Culig is supported by FWF, P24428, Athena Chalaris and Stefan Rose-John are supported by the Deutsche Forschungsgemeinschaft (Grant SFB 877, Project A1and the Cluster of Excellence --“Inflammation at Interfaces”). Work of the Aberger lab was supported by the Austrian Science Fund FWF (Projects P25629 and W1213), the European FP7 Marie-Curie Initial Training Network HEALING and the priority program Biosciences and Health of the Paris-Lodron University of Salzburg. Valeria Poli is supported by the Italian Association for Cancer Research (AIRC, No IG13009). Richard Kennedy and Steven Walker are supported by the McClay Foundation and the Movember Centre of Excellence (PC-UK and Movember). Gerda Egger is supported by FWF, P27616. Tim Malcolm and Suzanne Turner are supported by Leukaemia and Lymphoma Research.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms873

    Epigenomics of cancer – emerging new concepts

    Get PDF
    AbstractThe complexity of the mammalian genome is regulated by heritable epigenetic mechanisms, which provide the basis for differentiation, development and cellular homeostasis. These mechanisms act on the level of chromatin, by modifying DNA, histone proteins and nucleosome density/composition. During the last decade it became clear that cancer is defined by a variety of epigenetic changes, which occur in early stages of disease and parallel genetic mutations. With the advent of new technologies we are just starting to unravel the cancer epigenome and latest mechanistic findings provide the first clue as to how altered epigenetic patterns might occur in different cancers. Here we review latest findings on chromatin related mechanisms and hypothesize how their impairment might contribute to the altered epigenome of cancer cells

    An Epigenomic Approach to Improving Response to Neoadjuvant Cisplatin Chemotherapy in Bladder Cancer

    No full text
    Bladder cancer is among the five most common cancers diagnosed in the Western world and causes significant mortality and morbidity rates in affected patients. Therapeutic options to treat the disease in advanced muscle-invasive bladder cancer (MIBC) include cystectomy and chemotherapy. Neoadjuvant cisplatin-based combination chemotherapy is effective in MIBC; however, it has not been widely adopted by the community. One reason is that many patients do not respond to neoadjuvant chemotherapy, and no biomarker currently exists to identify these patients. It is also not clear whether a strategy to sensitize chemoresistant patients may exist. We sought to identify cisplatin-resistance patterns in preclinical models of bladder cancer, and test whether treatment with the epigenetic modifier decitabine is able to sensitize cisplatin-resistant bladder cancer cell lines. Using a screening approach in cisplatin-resistant bladder cancer cell lines, we identified dysregulated genes by RNA sequencing (RNAseq) and DNA methylation assays. DNA methylation analysis of tumors from 18 patients receiving cisplatin-based chemotherapy was used to confirm in vitro results. Cisplatin-resistant bladder cancer cells were treated with decitabine to investigate epigenetic sensitization of resistant cell lines. Our results show that HOXA9 promoter methylation status is associated with response to cisplatin-based chemotherapy in bladder cancer cell lines and in metastatic bladder cancer. Bladder cancer cells resistant to cisplatin chemotherapy can be sensitized to cisplatin by the DNA methylation inhibitor decitabine. Our data suggest that HOXA9 promoter methylation could serve as potential predictive biomarker and decitabine might sensitize resistant tumors in patients receiving cisplatin-based chemotherapy

    The effect of HER2 status on oncological outcomes of patients with invasive bladder cancer

    No full text
    The aim of this study was to evaluate the overexpression of human epidermal growth factor receptor 2 (HER2) in patients with bladder cancer (BCa) and to assess its association with oncological outcomes
    corecore