953 research outputs found

    The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease

    Get PDF
    AbstractEthics on animal use in science in Western society is based on utilitarianism, weighing the harms and benefits to the animals involved against those of the intended human beneficiaries. The 3Rs concept (Replacement, Reduction, Refinement) is both a robust framework for minimizing animal use and suffering (addressing the harms to animals) and a means of supporting high quality science and translation (addressing the benefits). The ambiguity of basic research performed early in the research continuum can sometimes make harm-benefit analysis more difficult since anticipated benefit is often an incremental contribution to a field of knowledge. On the other hand, benefit is much more evident in translational research aimed at developing treatments for direct application in humans or animals suffering from disease. Though benefit may be easier to define, it should certainly not be considered automatic. Issues related to model validity seriously compromise experiments and have been implicated as a major impediment in translation, especially in complex disease models where harms to animals can be intensified. Increased investment and activity in the 3Rs is delivering new research models, tools and approaches with reduced reliance on animal use, improved animal welfare, and improved scientific and predictive value

    Predicting patterns of service utilization within children\u27s mental health agencies

    Get PDF
    Background: Some children with mental health (MH) problems have been found to receive ongoing care, either continuously or episodically. We sought to replicate patterns of MH service use over extended time periods, and test predictors of these patterns. Methods: Latent class analyses were applied to 4 years of visit data from five MH agencies and nearly 6000 children, 4-to 13-years-old at their first visit. Results: Five patterns of service use were identified, replicating previous findings. Overall, 14% of cases had two or more episodes of care and 23% were involved for more than 2 years. Most children (53%) were seen for just a few visits within a few months. Two patterns represented cases with two or more episodes of care spanning multiple years. In the two remaining patterns, children tended to have just one episode of care, but the number of sessions and length of involvement varied. Using discriminant function analyses, we were able to predict with just over 50% accuracy children\u27s pattern of service use. Severe externalizing behaviors, high impairment, and high family burden predicted service use patterns with long durations of involvement and frequent visits. Conclusions: Optimal treatment approaches for children seen for repeated episodes of care or for care lasting multiple years need to be developed. Children with the highest level of need (severe pathology, impairment, and burden) are probably best served by providing high intensity services at the start of care

    Antibodies and IL-3 support helminth-induced basophil expansion

    Get PDF
    Basophils are powerful mediators of Th2 immunity and are present in increased numbers during allergic inflammation and helminth infection. Despite their ability to potentiate Th2 immunity the mechanisms regulating basophil development remain largely unknown. We have found a unique role for isotype-switched antibodies in promoting helminth-induced basophil production following infection of mice with Heligmosomoides polygyrus bakeri or Nippostrongylus brasiliensis. H. polygyrus bakeri-induced basophil expansion was found to occur within the bone marrow, and to a lesser extent the spleen, and was IL-3 dependent. IL-3 was largely produced by CD4+CD49b+NK1.1− effector T cells at these sites, and required the IL-4Rα chain. However, antibody-deficient mice exhibited defective basophil mobilization despite intact T-cell IL-3 production, and supplementation of mice with immune serum could promote basophilia independently of required IL-4Rα signaling. Helminth-induced eosinophilia was not affected by the deficiency in isotype-switched antibodies, suggesting a direct effect on basophils rather than through priming of Th2 responses. Although normal type 2 immunity occurred in the basopenic mice following primary infection with H. polygyrus bakeri, parasite rejection following challenge infection was impaired. These data reveal a role for isotype-switched antibodies in promoting basophil expansion and effector function following helminth infection

    If you build it, they still may not come: outcomes and process of implementing a community-based integrated knowledge translation mapping innovation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maps and mapping tools through geographic information systems (GIS) are highly valuable for turning data into useful information that can help inform decision-making and knowledge translation (KT) activities. However, there are several challenges involved in incorporating GIS applications into the decision-making process. We highlight the challenges and opportunities encountered in implementing a mapping innovation as a KT strategy within the non-profit (public) health sector, reflecting on the processes and outcomes related to our KT innovations.</p> <p>Methods</p> <p>A case study design, whereby the case is defined as the data analyst and manager dyad (a two-person team) in selected Ontario Early Year Centres (OEYCs), was used. Working with these paired individuals, we provided a series of interventions followed by one-on-one visits to ensure that our interventions were individually tailored to personal and local decision-making needs. Data analysis was conducted through a variety of qualitative assessments, including field notes, interview data, and maps created by participants. Data collection and data analysis have been guided by the Ottawa Model of Research Use (OMRU) conceptual framework.</p> <p>Results</p> <p>Despite our efforts to remove all barriers associated with our KT innovation (maps), our results demonstrate that both individual level and systemic barriers pose significant challenges for participants. While we cannot claim a causal association between our project and increased mapping by participants, participants did report a moderate increase in the use of maps in their organization. Specifically, maps were being used in decision-making forums as a way to allocate resources, confirm tacit knowledge about community needs, make financially-sensitive decisions more transparent, evaluate programs, and work with community partners.</p> <p>Conclusions</p> <p>This project highlights the role that maps can play and the importance of communicating the importance of maps as a decision support tool. Further, it represents an integrated knowledge project in the community setting, calling to question the applicability of traditional KT approaches when community values, minimal resources, and partners play a large role in decision making. The study also takes a unique perspective--where research producers and users work as dyad-pairs in the same organization--that has been under-explored to date in KT studies.</p

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Cobalt and zinc halide complexes of 4-chloro and 4-methylaniline : syntheses, structures and magnetic behavior

    Get PDF
    Please read abstract in the article.The Carlson School of Chemistry and Biochemistry, Clark University and the Department of Chemistry, Brandeis University. F. X. would like to acknowledge the funding from the European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No 701647.http://www.elsevier.com/locate/poly2020-08-01hj2019Chemistr

    Disparities in the analysis of morphological disparity

    Get PDF
    Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no ‘one-size-fits-all’ approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis

    A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat

    Get PDF
    Background Phosphorus (P) is an essential macronutrient for plant growth, and is required in large quantities by elite varieties of crops to maintain yields. Approximately 70% of global cultivated land suffers from P deficiency, and it has recently been estimated that worldwide P resources will be exhausted by the end of this century, increasing the demand for crops more efficient in their P usage. A greater understanding of how plants are able to maintain yield with lower P inputs is, therefore, highly desirable to both breeders and farmers. Here, we clone the wheat (Triticum aestivum L.) homologue of the rice PSTOL gene (OsPSTOL), and characterize its role in phosphate nutrition plus other agronomically important traits. Results TaPSTOL is a single copy gene located on the short arm of chromosome 5A, encoding a putative kinase protein, and shares a high level of sequence similarity to OsPSTOL. We re-sequenced TaPSTOL from 24 different wheat accessions and (3) three T. durum varieties. No sequence differences were detected in 26 of the accessions, whereas two indels were identified in the promoter region of one of the durum wheats. We characterised the expression of TaPSTOL under different P concentrations and demonstrated that the promoter was induced in root tips and hairs under P limiting conditions. Overexpression and RNAi silencing of TaPSTOL in transgenic wheat lines showed that there was a significant effect upon root biomass, flowering time independent of P treatment, tiller number and seed yield, correlating with the expression of TaPSTOL. However this did not increase PUE as elevated P concentration in the grain did not correspond to increased yields. Conclusions Manipulation of TaPSTOL expression in wheat shows it is responsible for many of the previously described phenotypic advantages as OsPSTOL except yield. Furthermore, we show TaPSTOL contributes to additional agronomically important traits including flowering time and grain size. Analysis of TaPSTOL sequences from a broad selection of wheat varieties, encompassing 91% of the genetic diversity in UK bread wheat, showed that there is very little genetic variation in this gene, which would suggest that this locus may have been under high selection pressure
    corecore