8 research outputs found
Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form
Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 angstrom, disclosing a homodimer. A serine from one subunit inserts into the active site of the other to donate to the oxyanion hole and coordinates the ligand proximal to the active-site cysteine. Dimerization. is unique to the mature form and is clearly a prerequisite for catalysis. The present structure supports a tripartite switch system that is triggered upon dimerization and substrate binding: (1) liberation of the active-site histidine from an inactive configuration, (2) relocation of residues blocking the substrate binding pockets and (3) repositioning of two active-site tryptophans to settle in the active configuration. Based on the present structure, the active site of clan CA cysteine proteases is expanded and a detailed mechanism of the deacylation mechanism is proposed. The results may have applications for the development of protease inhibitors specific to bacterial cysteine proteases. (c) 2009 Elsevier Ltd. All rights reserved
Streptococcal pyogenic exotoxin B (SpeB) boosts the contact system via binding of a-1 antitrypsin
International audienceThe Streptococcus pyogenes cysteine protease, SpeB, is important for the invasive potential of the bacteria, but its production is down-regulated following systemic infection. This prompted us to investigate if SpeB potentiated the host immune response after systemic spreading. Addition of SpeB to human plasma increased plasma-mediated bacterial killing and prolonged coagulation time through the intrinsic pathway of coagulation. This effect was independent of the enzymatic activity of SpeB and was mediated by a non-covalent medium-affinity binding and modification of the serpin alpha-1 antitrypsin. Consequently, supplement of alpha-1 antitrypsin to plasma increased bacterial survival. Sequestration of alpha-1 antitrypsin by SpeB led to enhanced contact system activation, supported by increased bacterial growth in prekallikrein deficient plasma. In a mouse model of systemic infection administration of SpeB significantly reduced bacterial dissemination. The findings reveal an additional layer of complexity to host-microbe interactions which may be of benefit in treatment of severe bacterial infections
Functional and Structural Properties of a Novel Protein and Virulence Factor (sHIP) in Streptococcus pyogenes
Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment enabling bacterial interactions with the host. In the present study we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice, with a non-virulent strain. Particularly one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal Histidine-rich glycoprotein Interacting Protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP, suggest a role for the protein in S. pyogenes pathogenesis