254 research outputs found

    Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit

    Full text link
    We have explored the spatial distribution of an ion cloud trapped in a linear octopole radio-frequency (rf) ion trap. The two-dimensional distribution of the column density of stored silver dimer cations was measured via photofragment-ion yields as a function of the position of the incident laser beam over the transverse cross section of the trap. The profile of the ion distribution was found to be dependent on the number of loaded ions. Under high ion-loading conditions with a significant space-charge effect, ions form a ring profile with a maximum at the outer region of the trap, whereas they are localized near the center axis region at low loading of the ions. These results are explained quantitatively by a model calculation based on equilibrium between the space-charge-induced potential and the effective potential of the multipole rf field. The maximum adiabaticity parameter \eta_max is estimated to be about 0.13 for the high ion-density condition in the present octopole ion trap, which is lower than typical values reported for low ion densities; this is probably due to additional instability caused by the space charge.Comment: 8 pages, 5 figure

    A prototype system for observing the Atlantic Meridional Overturning Circulation - scientific basis, measurement and risk mitigation strategies, and first results

    Get PDF
    The Atlantic Meridional Overturning Circulation (MOC) carries up to one quarter of the global northward heat transport in the Subtropical North Atlantic. A system monitoring the strength of the MOC volume transport has been operating since April 2004. The core of this system is an array of moored sensors measuring density, bottom pressure and ocean currents. A strategy to mitigate risks of possible partial failures of the array is presented, relying on backup and complementary measurements. The MOC is decomposed into five components, making use of the continuous moored observations, and of cable measurements across the Straits of Florida, and wind stress data. The components compensate for each other, indicating that the system is working reliably. The year-long average strength of the MOC is 18.7±5.6 Sv, with wind-driven and density-inferred transports contributing equally to the variability. Numerical simulations suggest that the surprisingly fast density changes at the western boundary are partially linked to westward propagating planetary wave

    Production Technology and Competitiveness In the Hungarian Manufacturing Industry

    Get PDF
    Following the big transformations of the 1990s, enterprise structure and technological level seem to have become stabilised in Hungary. Under these circumstances it is especially interesting to identify the elements responsible for competitiveness in general, and the role technology plays in development in particular, according to managers experienced in production and marketing. This empirical study – based on in-depth interviews and field research – summarises characteristics of the technological level in the sectors examined, role of technology and labour in production, effects of foreign direct investment, relations between competition and firm-level factors determining competitiveness, and concludes by summing up those most frequently mentioned proposals that should be incorporated into economic policy according to managers. Main findings indicate that more qualified, more intensive and cheaper labour can be substituted for high technology. The competitiveness of an enterprise is not determined by technology alone, but rather by a combination of technology, the parameters of available labour and the costs of investment increasing productivity. The insufficiency of inter-company relations, together with a shortage of available assets necessary for investment constitute the major threat undermining the competitiveness of enterprises in present-day Hungary

    The present and future system for measuring the Atlantic meridional overturning circulation and heat transport

    Get PDF
    of the global combined atmosphere-ocean heat flux and so is important for the mean climate of the Atlantic sector of the Northern Hemisphere. This meridional heat flux is accomplished by both the Atlantic Meridional Overturning Circulation (AMOC) and by basin-wide horizontal gyre circulations. In the North Atlantic subtropical latitudes the AMOC dominates the meridional heat flux, while in subpolar latitudes and in the subtropical South Atlantic the gyre circulations are also important. Climate models suggest the AMOC will slow over the coming decades as the earth warms, causing widespread cooling in the Northern hemisphere and additional sea-level rise. Monitoring systems for selected components of the AMOC have been in place in some areas for decades, nevertheless the present observational network provides only a partial view of the AMOC, and does not unambiguously resolve the full variability of the circulation. Additional observations, building on existing measurements, are required to more completely quantify the Atlantic meridional heat transport. A basin-wide monitoring array along 26.5°N has been continuously measuring the strength and vertical structure of the AMOC and meridional heat transport since March 31, 2004. The array has demonstrated its ability to observe the AMOC variability at that latitude and also a variety of surprising variability that will require substantially longer time series to understand fully. Here we propose monitoring the Atlantic meridional heat transport throughout the Atlantic at selected critical latitudes that have already been identified as regions of interest for the study of deep water formation and the strength of the subpolar gyre, transport variability of the Deep Western Boundary Current (DWBC) as well as the upper limb of the AMOC, and inter-ocean and intrabasin exchanges with the ultimate goal of determining regional and global controls for the AMOC in the North and South Atlantic Oceans. These new arrays will continuously measure the full depth, basin-wide or choke-point circulation and heat transport at a number of latitudes, to establish the dynamics and variability at each latitude and then their meridional connectivity. Modeling studies indicate that adaptations of the 26.5°N type of array may provide successful AMOC monitoring at other latitudes. However, further analysis and the development of new technologies will be needed to optimize cost effective systems for providing long term monitoring and data recovery at climate time scales. These arrays will provide benchmark observations of the AMOC that are fundamental for assimilation, initialization, and the verification of coupled hindcast/forecast climate models
    corecore