We have explored the spatial distribution of an ion cloud trapped in a linear
octopole radio-frequency (rf) ion trap. The two-dimensional distribution of the
column density of stored silver dimer cations was measured via
photofragment-ion yields as a function of the position of the incident laser
beam over the transverse cross section of the trap. The profile of the ion
distribution was found to be dependent on the number of loaded ions. Under high
ion-loading conditions with a significant space-charge effect, ions form a ring
profile with a maximum at the outer region of the trap, whereas they are
localized near the center axis region at low loading of the ions. These results
are explained quantitatively by a model calculation based on equilibrium
between the space-charge-induced potential and the effective potential of the
multipole rf field. The maximum adiabaticity parameter \eta_max is estimated to
be about 0.13 for the high ion-density condition in the present octopole ion
trap, which is lower than typical values reported for low ion densities; this
is probably due to additional instability caused by the space charge.Comment: 8 pages, 5 figure