

Corrigendum to

"Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) – applicability and corrections" published in Atmos. Meas. Tech., 2, 713–723, 2009

U. Platt¹, J. Meinen^{1,2}, D. Pöhler¹, and T. Leisner^{1,2}

¹Inst. for Environmental Physics (IUP), Atmosphere and Remote Sensing, Ruprecht-Karls-Universität Heidelberg, Germany ²Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology, Karlsruhe, Germany

In the manuscript published in Atmospheric Measurement Techniques:

"Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) – applicability and corrections" published in Atmos. Meas. Tech., 2, 713–723, 2009 by U. Platt et al., due to a communication problem the captions of the first three figures are permutated:

- Caption printed under Fig. 1 should be under Fig. 3
- Caption printed under Fig. 2 should be under Fig. 1
- Caption printed under Fig. 3 should be under Fig. 2

In the following the Figs. 1–3 of the above paper are reproduced with the correct captions:

Fig. 1. Sketch of intensities vs. wavelength: $I_{in0}(n_0)$: intensity (after n_0 passes through the cavity) in the pure air filled cavity without any absorbers, $I'_{in0}(n)$: intensity (after *n* passes through the cavity) after any continuous absorption (due to gases or aerosol) has taken place. $I_{in}(n)$: Intensity after *n* passes through the cavity including also differential absorptions (note that *n* varies with wavelength) since the trace gas absorption cross section varies with wavelength). $I_{in}(n_0)$: Theoretical intensity for the same absorptions if the number of traverses were not reduced.

Fig. 2. Sketch of CEAS set-up. The optical resonator is formed by two concave mirrors M_1 and M_2 , both with the same reflectivity $R = 1 - \rho$. The transmission factor for one traverse through the cavity is $T = 1 - \tau = 1 - \varepsilon d_0$. The intensity of the radiation emitted by the source is I_L (transfer optics between light source and resonator is not shown).

Fig. 3. Reduction of the light path L_{eff} in a cavity due to extinction in the cavity (expressed as optical density D_{CE}). Plotted is the ratio L_{eff}/L_0 , where L_0 denotes the average light path in an empty (air filled) cavity as described in the text. For illustration the effective light paths at 662 nm (peak of the NO₃ absorption band) for three realistic NO₃ total column densities (in cm⁻²) in the cavity are also shown (see Meinen et al., 2009).