26 research outputs found

    Atmospheric Aerosol Assisted Pulsed Plasma Polymerization: An Environmentally Friendly Technique for Tunable Catechol-Bearing Thin Films

    Get PDF
    In this work, an atmospheric aerosol assisted pulsed plasma process is reported as an environmentally friendly technique for the preparation of tunable catechol-bearing thin films under solvent and catalyst free conditions. The approach relies on the direct injection of dopamine acrylamide dissolved in 2-hydroxyethylmethacrylate as comonomer into the plasma zone. By adjusting the pulsing of the electrical discharge, the reactive plasma process can be alternatively switch ON (tON) and OFF (tOFF) during different periods of time, thus allowing a facile and fine tuning of the catechol density, morphology and deposition rate of the coating. An optimal tON/tOFF ratio is established, that permits maximizing the catechol content in the deposited film. Finally, a diagram, based on the average energy input into the process, is proposed allowing for easy custom synthesis of layers with specific chemical and physical properties, thus highlighting the utility of the developed dry plasma route

    Changes in protein expression in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated silver nanoparticles at different seasons

    Get PDF
    Potential toxic effects of Ag NPs ingested through the food web and depending on the season have not been addressed in marine bivalves. This work aimed to assess differences in protein expression in the digestive gland of female mussels after dietary exposure to Ag NPs in autumn and spring. Mussels were fed daily with microalgae previously exposed for 24 hours to 10 µg/L of PVP/PEI coated 5 nm Ag NPs. After 21 days, mussels significantly accumulated Ag in both seasons and Ag NPs were found within digestive gland cells and gills. Two-dimensional electrophoresis distinguished 104 differentially expressed protein spots in autumn and 142 in spring. Among them, chitinase like protein-3, partial and glyceraldehyde-3-phosphate dehydrogenase, that are involved in amino sugar and nucleotide sugar metabolism, carbon metabolism, glycolysis/gluconeogenesis and the biosynthesis of amino acids KEGG pathways, were overexpressed in autumn but underexpressed in spring. In autumn, pyruvate metabolism, citrate cycle, cysteine and methionine metabolism and glyoxylate and dicarboxylate metabolism were altered, while in spring, proteins related to the formation of phagosomes and hydrogen peroxide metabolism were differentially expressed. Overall, protein expression signatures depended on season and Ag NPs exposure, suggesting that season significantly influences responses of mussels to NP exposure.This work has been funded by the Spanish Ministry of Economy and Competitiveness (NanoSilverOmics project MAT2012-39372), Basque Government (SAIOTEK project S-PE13UN142 and Consolidated Research Group GIC IT810-13) and the University of the Basque Country UPV/EHU (UFI 11/37 and PhD fellowship to N.D.). This study had also the support of Fundação para a Ciência e Tecnologia (FCT) from Portugal through the Strategic Project UID/MAH00350/2013 granted to CIMA. The contribution of K. Mehennaoui was possible within the project NanoGAM (AFR-PhD-9229040) and M. Mikolaczyk was supported by a PhD fellowship from the French Ministry of Higher Education and Research.info:eu-repo/semantics/acceptedVersio

    Compréhension de l'impact des nanoparticules manufacturées : intérêt du gammare comme modèle invertébrés ?

    No full text
    The potential toxicity of nanomaterials is of high societal and scientific interest due to the promise of ground-breaking innovations for many technical applications. However, toxicity can often not be related to the actual size, mass or surface area of the single nanoparticles (NPs) or the NP agglomerates. Therefore, it can be proposed that the toxicity is greatly influenced by other inherent and non-understood properties of the particles to which ions dissolving from the particle, surface or molecules adhering to the surface interfering with the uptake of NPs into cells, may have important contributions. The PhD project “NANOGAM”, closely linked up to CORE2012 NANION project that aims to obtain knowledge to understand some of the processes and factors involved in NP uptake and toxicity as such understanding is a prerequisite for the development of nanomaterials following the safer-by-design philosophy. This PhD project aims to investigate, based on known characteristics of the key physico-chemical parameters; as size and surface functionalities, of a well-chosen list of silver and gold NPs, the uptake, and dependent biological effects of different complexity (mortality, behavioural effects, physiological effects, transcriptomic effects, etc.), on a sensitive species; Gammarus fossarum (Crustacea Amphipoda), in order to understand to which extent toxicity of nanomaterials is due to intrinsic material properties or ion leaching. Such understanding will contribute to the prediction of toxicity based on material properties rather than repetitive testing of an indefinite number of new nanomaterials. G. fossarum were exposed at low concentrations of AgNPs and AuNPs for 72h or 15 days in presence or absence of food. The obtained results showed that (i) surface coating is the main factor governing AgNPs and AuNPs uptake by G. fossarum, (ii) both released ions and NPs themselves play a role in the potency of the studied AgNPs and AuNPs and (iii) chemical composition led to different effects at the sub-individual levels (target genes expression) and different tissue distribution as AgNPs were found in G. fossarum gills while AuNPs were found in the intestinal caeca. Additionally, this work shows that Gammarus sp. are valuable models for the study of the effects of AgNPs and AuNPsLa toxicité potentielle des nanomatériaux présente un intérêt sociétal et scientifique élevé en raison de la promesse d'innovations pour de nombreuses applications techniques. Cependant, elle n’est pas forcément liée à la taille réelle, à la masse, à la surface des nanoparticules (NP) ou à leurs agglomérats. La toxicité des NPs pourrait être fortement influencée par d'autres propriétés inhérentes et encore incomprises telles que le relargage d’ions, de la particule elle-même, sa surface, ou des molécules adhérentes à la surface, qui interfèreraient avec l'absorption cellulaires des NPs. Le projet « NANOGAM» étroitement lié au projet « FNR CORE2012 NANION », vise à définir certains processus et facteurs impliqués dans l'absorption des NPs et leur toxicité. Une telle compréhension est une condition préalable au développement des nanomatériaux, fondement de la philosophie « safer-by-design ». Les objectifs de ce projet de thèse sont multiples. En tenant compte des caractéristiques des principaux paramètres physico-chimiques tels que la taille et l’aspect de la surface, l’étude a porté sur l'absorption de NPs d'argent et d'or, et leurs effets biologiques via une approche multi-biomarqueurs (mortalité, effets comportementaux, effets physiologiques, effets transcriptomiques, etc.) sur une espèce sensible, Gammarus fossarum (Crustacea Amphipoda). Le but de cette investigation est de comprendre si la toxicité des nanomatériaux est inhérente aux propriétés intrinsèques des NPs ou plutôt aux ions relargués, ce qui contribuera à la prédiction de la toxicité des NPs en rapport avec leurs propriétés physico-chimiques et ce afin de limiter le nombre d’essais répétitifs sur de nouveaux nanomatériaux. G. fossarum ont été exposés à de faibles concentrations d'AgNPs et AuNPs pendant 72h à jeun et 15 jours nourris. Les résultats obtenus ont montré que (i) la nature de l’enrobage de surface est le principal facteur responsable de l'absorption d'AgNPs et d'AuNPs par G. fossarum ; (ii) les ions libérés et les NPs elles-mêmes jouent un rôle dans la toxicité des AgNPs et AuNPs étudiées ; (iii) la composition chimique des NPs a conduit à des effets différents aux niveaux sub-individuels (transcriptomique), ainsi qu’à une distribution différente dans les tissues selon la nature métallique de la NP. Les AgNPs ont été localisées dans les branchies de G. fossarum tandis que les AuNPs ont été observées dans les caeca intestinaux. Cette étude a également révélé que Gammarus sp. est un excellent modèle pour l'étude de la toxicité et des effets des AgNPs et des AuNP

    Identification of reference genes for RT-qPCR data normalization in Gammarus fossarum (Crustacea Amphipoda)

    No full text
    Abstract Gene expression profiling via RT-qPCR is a robust technique increasingly used in ecotoxicology. Determination and validation of optimal reference genes is a requirement for initiating RT-qPCR experiments. To our best knowledge, this study is the first attempt of identifying a set of reference genes for the freshwater crustacean Gammarus fossarum. Six candidate genes (Actin, TUB, UB, SDH, Clathrin and GAPDH) were tested in order to determine the most stable ones in different stress conditions and to increase the robustness of RT-qPCR data. SDH and Clathrin appeared as the most stable ones. A validation was performed using G. fossarum samples exposed for 15 days to AgNO3, silver nanoparticles (AgNPs) 40 nm and gold nanoparticles (AuNPs) 40 nm. Effects on HSP90 were evaluated and data normalized using Clathrin and SDH. A down-regulation of HSP90 was observed when G. fossarum were exposed to AuNPs 40 nm whereas no effects were observed when G. fossarum were exposed to AgNPs 40 nm. This study highlights the importance of the preliminary determination of suitable reference genes for RT-qPCR experiments. Additionally, this study allowed, for the first time, the determination of a set of valuable genes that can be used in other RT-qPCR studies using G. fossarum as model organism

    Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses

    Full text link
    International audienceThis study aimed at investigating the individual and interactive effects of cadmium (Cd) and arsenate (AsV) in Gammarus pulex (Crustacea, Amphipoda) through the use of several biomarkers. Individuals were exposed for 240 h to two concentrations of AsV or Cd alone, and all the possible binary mixtures of these concentrations of AsV and Cd in a complete factorial design. The pattern of the biomarkers' responses to Cd and AsV alone or in mixture was similar in Gammarus pulex, even if the response intensity varied depending on the tested conditions. G. pulex responded to contamination with increased mobilization of the detoxification systems [i.e. gamma-glutamyl-cystein ligase activity (GCL), reduced glutathione content (GSH) and metallothionein concentrations (MT)]. This response seems to imply changes in energy reserve utilization (total lipids and proteins are used prior to glycogen reserves), but also a possible energy reallocation from locomotion to detoxification processes. The observed increase in lipid peroxidation could be relied to the increasing gammarid mortality, despite the higher mobilization of detoxification systems. Even if the outcome of the complex interactions between AsV and Cd remains difficult to unravel, such studies are critically important for better assessing the effects of stressors on organisms, populations and communities in a multi-contamination context of ecosystems

    Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda)

    No full text
    International audienceSilver nanoparticles (nAg) are widely used in consumer products and the risk associated with their potential release into freshwater ecosystems needs to be addressed using environmentally realistic exposure concentrations. Here, the effects of low concentrations (0.5–5 μg L−1) of two different sized nAg (10 and 60 nm) and a silver nitrate positive control were evaluated in Gammarus roeseli following exposure for 72 h. Cellular, individual and functional endpoints were independently studied and the most striking results were reported for functional endpoints. Indeed, without a change in their feeding activity, the gammarids produced significantly fewer fine particles of organic matter when exposed to nAg, even at 0.5 μg L-1 of 10 nm nAg. These functional endpoints seem to be efficient markers for detecting the early effects of nAg on G. roeseli
    corecore