102 research outputs found

    Serum MASP-1 in complex with MBL activates endothelial cells.

    Get PDF
    The complement system plays an important role in the induction of inflammation. In this study we demonstrate that the initiation complexes of the lectin pathway, consisting of mannose-binding lectin (MBL) and associated serine proteases (MASPs) elicit Ca2+ signaling in cultured endothelial cells (HUVECs). This is in agreement with our previous results showing that the recombinant catalytic fragment of MASP-1 activates endothelial cells by cleaving protease activated receptor 4. Two other proteases, MASP-2 and MASP-3 are also associated with MBL. Earlier we showed that recombinant catalytic fragment of MASP-2 cannot activate HUVECs, and in this study we demonstrate that the same fragment of MASP-3 has also no effect. We find the same to be the case if we use recombinant forms of the N-terminal parts of MASP-1 and MASP-2 which only contain non-enzymatic domains. Moreover, stable zymogen mutant form of MASP-1 was also ineffective to stimulate endothelial cells, which suggests that in vivo MASP-1 have the ability to activate endothelial cells directly as well as to activate the lectin pathway simultaneously. We show that among the components of the MBL-MASPs complexes only MASP-1 is able to trigger response in HUVECs and the proteolytic activity of MASP-1 is essential. Our results strengthen the view that MASP-1 plays a central role in the early innate immune response

    Cleavage of Kininogen and Subsequent Bradykinin Release by the Complement Component: Mannose-Binding Lectin-Associated Serine Protease (MASP)-1

    Get PDF
    Bradykinin (BK), generated from high-molecular-weight kininogen (HK) is the major mediator of swelling attacks in hereditary angioedema (HAE), a disease associated with C1-inhibitor deficiency. Plasma kallikrein, activated by factor XIIa, is responsible for most of HK cleavage. However other proteases, which activate during episodes of angioedema, might also contribute to BK production. The lectin pathway of the complement system activates after infection and oxidative stress on endothelial cells generating active serine proteases: MASP-1 and MASP-2. Our aim was to study whether activated MASPs are able to digest HK to release BK. Initially we were trying to find potential new substrates of MASP-1 in human plasma by differential gel electrophoresis, and we identified kininogen cleavage products by this proteomic approach. As a control, MASP-2 was included in the study in addition to MASP-1 and kallikrein. The proteolytic cleavage of HK by MASPs was followed by SDS-PAGE, and BK release was detected by HPLC. We showed that MASP-1 was able to cleave HK resulting in BK production. MASP-2 could also cleave HK but could not release BK. The cleavage pattern of MASPs is similar but not strictly identical to that of kallikrein. The catalytic efficiency of HK cleavage by a recombinant version of MASP-1 and MASP-2 was about 4.0×102 and 2.7×102 M−1s−1, respectively. C1-inhibitor, the major inhibitor of factor XIIa and kallikrein, also prevented the cleavage of HK by MASPs. In all, a new factor XII- and kallikrein-independent mechanism of bradykinin production by MASP-1 was demonstrated, which may contribute to the pro-inflammatory effect of the lectin pathway of complement and to the elevated bradykinin levels in HAE patients

    Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids

    Get PDF
    Chromosome pairing in the meiotic metaphase I of wheatrye hybrids has been characterized by sequential genomic and fluorescent in situ hybridization allowing not only the discrimination of wheat and rye chromosomes, but also the identification of the individual wheat and rye chromosome arms involved in the chromosome associations. The majority of associations (93.8%) were observed between the wheat chromosomes. The largest number of wheat-wheat chromosome associations (53%) was detected between the A and D genomes, while the frequency of B-D and A-B associations was significantly lower (32 and 8%, respectively). Among the A-D chromosome associations, pairing between the 3AL and 3DL arms was observed with the highest frequency, while the most frequent of all the chromosome associations (0.113/ cell) was found to be the 3DS-3BS. Differences in the pairing frequency of the individual chromosome arms of wheat-rye hybrids have been discussed in relation to the homoeologous relationships between the constituent genomes of hexaploid wheat

    MASP-1 Induces a Unique Cytokine Pattern in Endothelial Cells: A Novel Link between Complement System and Neutrophil Granulocytes

    Get PDF
    Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca(2+)-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms

    Stability analysis of wheat populations and mixtures based on the physical, compositional and processing properties of the seeds

    Get PDF
    Six cropping populations, three variety mixtures and one diversity population were developed from winter wheat varieties and studied for physical, compositional and end-use quality traits for three years (2011–2013) under different European climatic and management conditions in order to study the stability of these traits resulted by the genetic diversity. The beneficial compositional and nutritional properties of the populations were assessed, while variation and stability of the traits were analysed statistically. No significant differences were found among the populations in low-input and organic management farming systems in the physical, compositional and processing properties, but there was a difference in the stability of these traits. Most of the populations showed higher stability than the control wheat variety, and populations developed earlier had higher stability than those developed later. Furthermore, some populations were found to be especially unstable for some traits at certain sites (mostly at Austrian, Swiss and UK organic sites). Protein content of the populations was high (13.0–14.7%) without significant difference among them, but there was significant variation in their gluten content (28–36%) and arabinoxylan content (14.6–20.3 mg/g). The most outstanding population for both protein and arabinoxylan content was a Hungarian cropping population named ELIT-CCP. It was concluded that the diversity found in the mixtures and CCPs have stabilizing effect on the quality parameters, but a higher stability was observed under low-input than under organic conditions. These results could be beneficial not only for breeders but also for the consumers in the long run

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley

    Get PDF
    Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop of barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we applied refined statistical methods, including based on exomic haplotype states, for genotype-by-environment (G 7E) modelling. Sub-populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G 7E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock-related genes, associated with the environmentally-adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G 7E effect directions, and the importance of latitudinally-based genic context in the expression of large effect alleles. Our analysis supports a gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses

    Effects of MASP-1 of the Complement System on Activation of Coagulation Factors and Plasma Clot Formation

    Get PDF
    BACKGROUND: Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. METHODOLOGY/PRINCIPAL FINDINGS: We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. CONCLUSIONS/SIGNIFICANCE: We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation
    • …
    corecore