18 research outputs found

    Two

    Get PDF
    Precisely this fogged window, which prevails in the cold, wet night, blinks out onto an uninhabited land of Other People?s houses and in sight of all that forgotten real estate, along with all the amiable conversations on phones across America and evenings shared in movie houses, around the corner from a recent homicide, down the block from wild lots and weeds, great unknowns, colossal, all evolving along with Darwin and his species. One?s life, assumed to be finite, ticking away. Night covers things up but you can still hear the rain.https://digitalcommons.butler.edu/onearth/1028/thumbnail.jp

    Mammal communities are larger and more diverse in moderately developed areas

    Get PDF
    Developed areas are thought to have low species diversity, low animal abundance, few native predators, and thus low resilience and ecological function. Working with citizen scientist volunteers to survey mammals at 1427 sites across two development gradients (wild-rural-exurban- suburban-urban) and four plot types (large forests, small forest fragments, open areas and residential yards) in the eastern US, we show that developed areas actually had significantly higher or statistically similar mammalian occupancy, relative abundance, richness and diversity compared to wild areas. However, although some animals can thrive in suburbia, conservation of wild areas and preservation of green space within cities are needed to protect sensitive species and to give all species the chance to adapt and persist in the Anthropocene. DOI: https://doi.org/10.7554/eLife.38012.00

    An empirical evaluation of camera trap study design: How many, how long and when?

    Get PDF
    Abstract Camera traps deployed in grids or stratified random designs are a well‐established survey tool for wildlife but there has been little evaluation of study design parameters. We used an empirical subsampling approach involving 2,225 camera deployments run at 41 study areas around the world to evaluate three aspects of camera trap study design (number of sites, duration and season of sampling) and their influence on the estimation of three ecological metrics (species richness, occupancy and detection rate) for mammals. We found that 25–35 camera sites were needed for precise estimates of species richness, depending on scale of the study. The precision of species‐level estimates of occupancy (ψ) was highly sensitive to occupancy level, with 0.75) species, but more than 150 camera sites likely needed for rare (ψ < 0.25) species. Species detection rates were more difficult to estimate precisely at the grid level due to spatial heterogeneity, presumably driven by unaccounted habitat variability factors within the study area. Running a camera at a site for 2 weeks was most efficient for detecting new species, but 3–4 weeks were needed for precise estimates of local detection rate, with no gains in precision observed after 1 month. Metrics for all mammal communities were sensitive to seasonality, with 37%–50% of the species at the sites we examined fluctuating significantly in their occupancy or detection rates over the year. This effect was more pronounced in temperate sites, where seasonally sensitive species varied in relative abundance by an average factor of 4–5, and some species were completely absent in one season due to hibernation or migration. We recommend the following guidelines to efficiently obtain precise estimates of species richness, occupancy and detection rates with camera trap arrays: run each camera for 3–5 weeks across 40–60 sites per array. We recommend comparisons of detection rates be model based and include local covariates to help account for small‐scale variation. Furthermore, comparisons across study areas or times must account for seasonality, which could have strong impacts on mammal communities in both tropical and temperate sites

    Un-Hiding AV in Manuscript Collections

    No full text
    Megan McShea's presentation from the MARAC Spring 2014 conference, "Un-hiding AV in Manuscript Collections", S2 - April 25, 2014, Rochester, N

    Raw detection data from camera traps

    No full text
    Each row represents a detection of a species from camera traps set in Raleigh, NC, USA and Washington, DC, USA between 2012 and 2016

    Data from: Mammal communities are larger and more diverse in moderately developed areas

    Get PDF
    Developed areas are thought to have low species diversity, low animal abundance, few native predators, and thus low resilience and ecological function. Working with citizen scientist volunteers to survey mammals at 1427 sites across two development gradients (wild-rural-exurban-suburban-urban) and four plot types (large forests, small forest fragments, open areas and residential yards) in the eastern US, we show that developed areas actually had significantly higher or statistically similar mammalian occupancy, relative abundance, richness and diversity compared to wild areas. However, although some animals can thrive in suburbia, conservation of wild areas and preservation of green space within cities are needed to protect sensitive species and to give all species the chance to adapt and persist in the Anthropocene

    Data from: Does hunting or hiking affect wildlife communities in protected areas?

    No full text
    Managed public wild areas have dual mandates to protect biodiversity and provide recreational opportunities for people. These goals could be at odds if recreation, ranging from hiking to legal hunting, disrupts wildlife enough to alter their space use or community structure. We evaluated the effect of managed hunting and recreation on 12 terrestrial wildlife species by employing a large citizen science camera trapping survey at 1947 sites stratified across different levels of human activities in 32 protected forests in the eastern USA. Habitat covariates, especially the amount of large continuous forest and local housing density, were more important than recreation for affecting the distribution of most species. The four most hunted species (white-tailed deer, raccoons, eastern grey and fox squirrels) were commonly detected throughout the region, but relatively less so at hunted sites. Recreation was most important for affecting the distribution of coyotes, which used hunted areas more compared with unhunted control areas, and did not avoid areas used by hikers. Most species did not avoid human-made trails, and many predators positively selected them. Bears and bobcats were more likely to avoid people in hunted areas than unhunted preserves, suggesting that they perceive the risk of humans differently depending on local hunting regulations. However, this effect was not found for the most heavily hunted species, suggesting that human hunters are not broadly creating ‘fear’ effects to the wildlife community as would be expected for apex predators. Synthesis and applications. Although we found that hiking and managed hunting have measureable effects on the distribution of some species, these were relatively minor in comparison with the importance of habitat covariates associated with land use and habitat fragmentation. These patterns of wildlife distribution suggest that the present practices for regulating recreation in the region are sustainable and in balance with the goal of protecting wildlife populations and may be facilitated by decades of animal habituation to humans. The citizen science monitoring approach we developed could offer a long-term monitoring protocol for protected areas, which would help managers to detect where and when the balance between recreation and wildlife has tipped

    eMammal detections dataset

    No full text
    This file contains the raw species detections from camera-trap data across 33 protected areas in the Southeastern United States from 2012-2013. Each row represents one detection and the associated location, time and species
    corecore