98 research outputs found

    Ab initio calculation of the neutron-proton mass difference

    Get PDF
    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300300 kilo-electron volts, which is greater than 00 by 55 standard deviations. We also determine the splittings in the Σ\Sigma, Ξ\Xi, DD and Ξcc\Xi_{cc} isospin multiplets, exceeding in some cases the precision of experimental measurements.Comment: 57 pages, 15 figures, 6 tables, revised versio

    Management of diarrhea in patients with HER2-positive breast cancer treated with neratinib: A case series and summary of the literature

    Get PDF
    INTRODUCTION: Neratinib and neratinib-based combinations have demonstrated efficacy for treatment of human epidermal growth factor receptor 2-positive (HER2+) early-stage and metastatic breast cancers. However, diarrhea has been reported as a common adverse event leading to neratinib discontinuation. Results from the CONTROL trial suggest that proactive diarrhea management with antidiarrheal prophylaxis or dose escalation of neratinib from a lower starting dose to the full FDA-approved dose of 240 mg/day can reduce the incidence, duration, and severity of neratinib-associated diarrhea in patients with early-stage breast cancer. Dose escalation has been included in the FDA-approved label for both early-stage and metastatic HER2+ breast cancer since June 2021. CASE SERIES: This series of five cases details real-world clinical implementation of strategies for management of neratinib-induced diarrhea in patients with early-stage and metastatic HER2+ breast cancer, including a patient with a pre-existing gastrointestinal disorder. MANAGEMENT AND OUTCOME: In four of five cases, diarrhea was managed with neratinib dose escalation, and antidiarrheal prophylaxis with loperamide plus colestipol was used in the remaining case. Management of diarrhea allowed all patients to remain on therapy. DISCUSSION: This case series shows that neratinib-associated diarrhea can be managed effectively with neratinib dose escalation from a lower initial starting dose and/or prophylactic antidiarrheal medications in a real-world clinical setting. The findings highlight the importance of patient-provider communication in proactive management of adverse events. Widespread implementation of the strategies described here may improve adherence and thereby clinical outcomes for patients with HER2+ breast cancer treated with neratinib

    Planet Hunters: Assessing the Kepler Inventory of Short Period Planets

    Full text link
    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of \geq 2 R\oplus planets on short period (< 15 days) orbits based on Planet Hunters detections. We present these results along with an analysis of the detection efficiency of human classifiers to identify planetary transits including a comparison to the Kepler inventory of planet candidates. Although performance drops rapidly for smaller radii, \geq 4 R\oplus Planet Hunters \geq 85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler \geq 4 R\oplus planets suggest suggests the Kepler inventory of \geq 4 R\oplus short period planets is nearly complete.Comment: 41 pages,13 figures, 8 tables, accepted to Ap

    The Type Ia Supernova Rate in Redshift 0.5--0.9 Galaxy Clusters

    Get PDF
    Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star-formation histories. We have carried out a survey for supernovae (SNe) in galaxy clusters, at a redshift range 0.5<z<0.9, using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. We reimaged a sample of 15 clusters that were previously imaged by ACS, thus obtaining two to three epochs per cluster, in which we discovered five likely cluster SNe, six possible cluster SNe Ia, two hostless SN candidates, and several background and foreground events. Keck spectra of the host galaxies were obtained to establish cluster membership. We conducted detailed efficiency simulations, and measured the stellar luminosities of the clusters using Subaru images. We derive a cluster SN rate of 0.35 SNuB +0.17/-0.12 (statistical) \pm0.13 (classification) \pm0.01 (systematic) [where SNuB = SNe (100 yr 10^10 L_B_sun)^-1] and 0.112 SNuM +0.055/-0.039 (statistical) \pm0.042 (classification) \pm0.005 (systematic) [where SNuM = SNe (100 yr 10^10 M_sun)^-1]. As in previous measurements of cluster SN rates, the uncertainties are dominated by small-number statistics. The SN rate in this redshift bin is consistent with the SN rate in clusters at lower redshifts (to within the uncertainties), and shows that there is, at most, only a slight increase of cluster SN rate with increasing redshift. The low and fairly constant SN Ia rate out to z~1 implies that the bulk of the iron mass in clusters was already in place by z~1. The recently observed doubling of iron abundances in the intracluster medium between z=1 and 0, if real, is likely the result of redistribution of existing iron, rather than new production of iron.Comment: Accepted to ApJ. Full resolution version available at http://kicp.uchicago.edu/~kerens/HSTclusterSNe

    Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25

    Get PDF
    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching four years of Kepler time series photometry (Data Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and ten high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter which automatically vets the DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discusses the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal Supplement Serie

    SN 2022jox: An extraordinarily ordinary Type II SN with Flash Spectroscopy

    Full text link
    We present high cadence optical and ultraviolet observations of the Type II supernova (SN), SN 2022jox which exhibits early spectroscopic high ionization flash features of \ion{H}{1}, \ion{He}{2}, \ion{C}{4}, and \ion{N}{4} that disappear within the first few days after explosion. SN 2022jox was discovered by the Distance Less than 40 Mpc (DLT40) survey \sim0.75 days after explosion with followup spectra and UV photometry obtained within minutes of discovery. The SN reached a peak brightness of MV_V \sim -17.3 mag, and has an estimated 56^{56}Ni mass of 0.04 M_{\odot}, typical values for normal Type II SNe. The modeling of the early lightcurve and the strong flash signatures present in the optical spectra indicate interaction with circumstellar material (CSM) created from a progenitor with a mass loss rate of M˙103102 M yr1\dot{M} \sim 10^{-3}-10^{-2}\ M_\odot\ \mathrm{yr}^{-1}. There may also be some indication of late-time CSM interaction in the form of an emission line blueward of Hα\alpha seen in spectra around 200 days. The mass-loss rate is much higher than the values typically associated with quiescent mass loss from red supergiants, the known progenitors of Type II SNe, but is comparable to inferred values from similar core collapse SNe with flash features, suggesting an eruptive event or a superwind in the progenitor in the months or years before explosion.Comment: Submitted to Ap

    Planet Hunters TESS. V. A Planetary System Around a Binary Star, Including a Mini-Neptune in the Habitable Zone

    Get PDF
    We report on the discovery and validation of a transiting long-period mini-Neptune orbiting a bright (V = 9.0 mag) G dwarf (TOI 4633; R = 1.05 R ⊙, M = 1.10 M ⊙). The planet was identified in data from the Transiting Exoplanet Survey Satellite by citizen scientists taking part in the Planet Hunters TESS project. Modelling of the transit events yields an orbital period of 271.9445 ± 0.0040 days and radius of 3.2 ± 0.20 R ⊕. The Earth-like orbital period and an incident flux of 1.56−0.16+0.20 F ⊕ places it in the optimistic habitable zone around the star. Doppler spectroscopy of the system allowed us to place an upper mass limit on the transiting planet and revealed a non-transiting planet candidate in the system with a period of 34.15 ± 0.15 days. Furthermore, the combination of archival data dating back to 1905 with new high angular resolution imaging revealed a stellar companion orbiting the primary star with an orbital period of around 230 yr and an eccentricity of about 0.9. The long period of the transiting planet, combined with the high eccentricity and close approach of the companion star makes this a valuable system for testing the formation and stability of planets in binary systems
    corecore