8 research outputs found
Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars
Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295–298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures
Recommended from our members
Shock re-equilibration of fluid inclusions in crystalline basement rocks from the Ries crater, Germany
This study examines the effects of shock metamorphism on fluid inclusions in crystalline basement target rocks from the Ries crater, Germany. The occurrence of two-phase fluid inclusions decreases from shock stage 0 to shock stage 1, while single-phase inclusions increase, likely as a result of re-equilibration. In shock stages 2 and 3, both two-phase and single-phase inclusions decrease with increasing shock stage, indicating that fluid inclusion vesicles are destroyed due to plastic deformation and phase changes in the host minerals. However, quartz clasts entrained in shock stage 4 melts contain both single-phase and two-phase inclusions, demonstrating the rapid quenching of the melt and the heterogeneous nature of impact deformation. Inclusions in naturally shocked polycrystalline samples survive at higher shock pressures than those in single crystal shock experiments. However, fluid inclusions in both experimental and natural samples follow a similar trend in re-equilibration at low to moderate shock pressures leading to destruction of inclusion vesicles in higher shock stages. This suggests that shock processing may lead to the destruction of fluid inclusions in many planetary materials and likely contributed to shock devolatilization of early planetesimals.The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
Volatile trapping in Martian clathrates
International audienceThermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet's volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere