12 research outputs found
Tolerance of Novel Toxins through Generalized Mechanisms: Simulating Gradual Host Shifts of ButterfliesKristin
Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments
Adaptive radiation along a deeply conserved genetic line of least resistance in \u3cem\u3eAnolis\u3c/em\u3e lizards
On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along âgenetic lines of least resistanceâ defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20â40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape
Data from: Nickel exposure has complex transgenerational effects in a butterfly
Heavy metal pollution is a major problem in urban and industrial environments, and has a myriad of negative effects on animals. Quantifying the amount of population-level variation that exists for heavy metal tolerance and how plastic responses to heavy metals play out across generations are essential for understanding how animals respond to pollution. As an initial step towards studying transgenerational effects and population-level variation in concert, we brought cabbage white butterflies (Pieris rapae) from two populations â collected from St. Paul, Minnesota and Davis, California â into common conditions and fed them a diet dosed with nickel. To measure transgenerational effects, we reared a second generation in a fully factorial design, within each population, to achieve all combinations of parent and offspring exposure to nickel or control diets. Across both generations, we quantified survival and other fitness-related traits, including development time, body size, and egg size and number. We found both population differences and complex transgenerational effects, including a positive effect of nickel on survival and development time in one of the populations. Overall, nickel exposure was stressful in one population, mainly after two generations of exposure, and had neutral or slightly positive effects on the other. We found no evidence for costs of mismatch between parental and offspring environments. While the reasons for the differences observed between the two populations are unclear, the variation in nickel tolerance observed in this species suggests that some organisms may be less affected by low levels of heavy metal pollution in urban and industrial areas than expected
Data from: Developmental lead exposure has mixed effects on butterfly cognitive processes
While the effects of lead pollution have been well studied in vertebrates, it is unclear to what extent lead may negatively affect insect cognition. Lead pollution in soils can elevate lead in plant tissues, suggesting it could negatively affect neural development of insect herbivores. We used the cabbage white butterfly (Pieris rapae) as a model system to study the effect of lead pollution on insect cognitive processes, which play an important role in how insects locate and handle resources. Cabbage white butterfly larvae were reared on a 4-ppm lead diet, a concentration representative of vegetation in polluted sites; we measured eye size and performance on a foraging assay in adults. Relative to controls, lead-reared butterflies did not differ in time or ability to search for a food reward associated with a less preferred color. Indeed, lead-treated butterflies were more likely to participate in the behavioral assay itself. Lead exposure did not negatively affect survival or body size, and it actually sped up development time. The effects of lead on relative eye size varied with sex: lead tended to reduce eye size in males, but increase eye size in females. These results suggest that low levels of lead pollution may have mixed effects on butterfly vision, but only minimal impacts on performance in foraging tasks, although follow-up work is needed to test whether this result is specific to cabbage whites, which are often associated with disturbed areas
Behavioral, developmental, and eye size data
This excel sheet contains: 1) individual-level summary of performance in behavioral trials, 2) raw data for individuals choosing correct colored sponges versus making mistakes in behavioral trials, 3) all individuals that attempted the behavioral trial (including those that did not participate), 4) development time and survival data for all individuals transferred onto control and lead diets, and 5) eye size and wing size data for individuals reared on control and lead diets
Tolerance of Novel Toxins through Generalized Mechanisms: Simulating Gradual Host Shifts of ButterfliesKristin
Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments
Evidence that toxin resistance in poison birds and frogs is not rooted in sodium channel mutations and may rely on âtoxin spongeâ proteins
Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX âtoxin spongeâ protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 NâT mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins
Data from: Adaptive radiation along a deeply conserved genetic line of least resistance in Anolis lizards
On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along âgenetic lines of least resistanceâ defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20-40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape
Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance
Novel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes. One such adaptation, extreme resistance to tetrodotoxin (TTX), has arisen in several species of snakes through coevolutionary arms races with toxic amphibian prey, which select for TTX-resistant voltage-gated sodium channels (Nav) [12-16]. Here, we show that the relatively recent origins of extreme toxin resistance, which involve the skeletal muscle channel Nav1.4, were facilitated by ancient evolutionary changes in two other members of the same gene family. A substitution conferring TTX resistance to Nav1.7, a channel found in small peripheral neurons, arose in lizards âŒ170 million years ago (mya) and was present in the common ancestor of all snakes. A second channel found in larger myelinated neurons, Nav1.6, subsequently evolved resistance in four different snake lineages beginning âŒ38 mya. Extreme TTX resistance has evolved at least five times within the past 12 million years via changes in Nav1.4, but only within lineages that previously evolved resistant Nav1.6 and Nav1.7. Our results show that adaptive protein evolution may be contingent upon enabling substitutions elsewhere in the genome, in this case, in paralogs of the same gene family.Animal science