506 research outputs found

    CD8+ T lymphocytes infiltrate in mammary tumours chemically­induced in female rats: what is the influence of ketotifen administration?

    Get PDF
    Background: Mammary cancer is one of the most frequent cancers among women. Neoplasia are complex masses composed of both neoplastic and non-neoplastic cells, like vascular and lymphatic endothelial cells, adipocytes, mesenchymal cells, fibroblasts, myeloid and inflammatory cells (lymphocytes, neutrophils, eosinophils, macrophages, and mast cells). This work aimed to evaluate the effects of ketotifen on the infiltrate of CD8+ T lymphocytes in mammary tumours chemically-induced in female rats. Material and methods: All experiments were performed in accordance with the legislation on the protection of animals used for scientific purposes. The experiments were approved by the Portuguese Competent Authority (no.008961) and University Ethics Committee (CE_12-2013). Thirty-four female Sprague-Dawley rats were randomly assigned to five experimental groups. At seven weeks of age, mammary tumours’ development was induced in animals from groups I, II, III (n=10+10+10) by a single intraperitoneal injection of the carcinogen N-methyl-N-nitrosourea (MNU). Animals from groups IV and V were injected with saline. Groups II and IV (n=2) were treated with ketotifen in drinking water (1 mg/kg/day, 7 days/week) immediately after MNU administration for 18 weeks, while animals from group III received the ketotifen only after the development of the first mammary tumour. Groups I and V (n=2) received only water. Animals were sacrificed at 25 weeks of age by an overdose of ketamine and xylazine, followed by an exsanguination by cardiac puncture. Mammary tumors were collected and immersed in 10% buffered formalin. The infiltrate of CD8+ T lymphocytes was assessed by immunohistochemistry using the antibody anti-CD8 (ab33786; Abcam), at a dilution of 1:250, overnight. The immunoexpression was evaluated manually, counting the number of positive cells in five random fields, at a magnification of 400x. Data was statistically analysed using Statistical Package for the Social Sciences (SPSS). Results: Animals from groups IV and V did not develop any mammary tumor. The iummunoexpression of anti-CD8 was evaluated in 56 tumours (19 from group I, 19 from group II and 18 from group III). The antibody presented a cytoplasmatic immunoexpression in all mammary tumours. The mean number of immunopositive cells was 21.75 ± 1.74 in group I, 21.75 ± 1.74 in group II and 22.75 ± 2.01 in group III. No differences were observed among groups (p>0.05). Conclusions: Apparently, the ketotifen administration did not modulate the infiltrate of CD8+ T lymphocytes in mammary tumours chemically-induced in female rats. Further studies addressing the effects of different concentrations of ketotifen are warranted

    The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no biological or epidemiological data on the association between <it>NOS3 </it>promoter polymorphisms and prostate cancer. The polymorphisms in the promoter region of <it>NOS3 </it>gene may be responsible for variations in the plasma NO, which may promote cancer progression by providing a selective growth advantage to tumor cells by angiogenic stimulus and by direct DNA damage.</p> <p>Methods</p> <p>This study aimed evaluating the <it>NOS3 </it>promoter polymorphisms by PCR-SSCP and sequencing, associating genotypes and haplotypes with <it>NOS3 </it>expression levels through semi-quantitative RT-PCR, and with <it>PCA</it>3 mRNA detection, a specific tumor biomarker, in the peripheral blood of pre-surgical samples from 177 patients; 83 PCa and 94 BPH.</p> <p>Results</p> <p>Three novel SNPs were identified -764A>G, -714G>T and -649G>A in the <it>NOS3 </it>gene promoter region, which together with the -786T>C generated four haplotypes (N, T, C, A). <it>NOS3 </it>gene expression levels were affected by the -786T>C polymorphism, and there was a 2-fold increase in <it>NOS3 </it>levels favored by the incorporation of each C allele. <it>NOS3 </it>levels higher than 80% of the constitutive gene expression level (<it>B2M</it>) presented a 4-fold increase in PCa occurrence.</p> <p>Conclusion</p> <p>The -786T>C polymorphism was the most important promoter alteration of the <it>NOS3 </it>gene that may affect the PCa progression, but not its occurrence, and the incorporation of the C allele is associated with increased levels of <it>NOS3 </it>transcripts. The <it>NOS3 </it>transcript levels presented a bimodal behavior in tumor development and may be used as a biomarker together with the <it>PCA3 </it>marker for molecular staging of the prostate cancer.</p

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    Size Evolution of Ordered SiGe Islands Grown by Surface Thermal Diffusion on Pit-Patterned Si(100) Surface

    Get PDF
    The ordered growth of self-assembled SiGe islands by surface thermal diffusion in ultra high vacuum from a lithographically etched Ge stripe on pit-patterned Si(100) surface has been experimentally investigated. The total surface coverage of Ge strongly depends on the distance from the source stripe, as quantitatively verified by Scanning Auger Microscopy. The size distribution of the islands as a function of the Ge coverage has been studied by coupling atomic force microscopy scans with Auger spectro-microscopy data. Our observations are consistent with a physical scenario where island positioning is essentially driven by energetic factors, which predominate with respect to the local kinetics of diffusion, and the growth evolution mainly depends on the local density of Ge atoms

    No evidence for an association between the -36A>C phospholamban gene polymorphism and a worse prognosis in heart failure

    Get PDF
    Background: In Brazil, heart failure leads to approximately 25,000 deaths per year. Abnormal calcium handling is a hallmark of heart failure and changes in genes encoding for proteins involved in the re-uptake of calcium might harbor mutations leading to inherited cardiomyopathies. Phospholamban (PLN) plays a prime role in cardiac contractility and relaxation and mutations in the gene encoding PLN have been associated with dilated cardiomyopathy. In this study, our objective was to determine the presence of the -36A>C alteration in PLN gene in a Brazilian population of individuals with HF and to test whether this alteration is associated with heart failure or with a worse prognosis of patients with HF. Methods: We genotyped a cohort of 881 patients with HF and 1259 individuals from a cohort of individuals from the general population for the alteration -36A>C in the PLN gene. Allele and genotype frequencies were compared between groups (patients and control). In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotypic groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the -36A>C were compared regarding mortality incidence in HF patients. Results: No significant association was found between the study polymorphism and HF in our population. In addition, no association between PLN -36A>C polymorphism and demographic, clinical and functional characteristics and mortality incidence in this sample of HF patients was observed. Conclusion: Our data do not support a role for the PLN -36A>C alteration in modulating the heart failure phenotype, including its clinical course, in humans

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Pulegone and Eugenol Oral Supplementation in Laboratory Animals: Results from Acute and Chronic Studies

    Get PDF
    Essential oils are natural compounds used by humans for scientific purposes due to their wide range of properties. Eugenol is mostly present in clove oil, while pulegone is the main constituent of pennyroyal oil. To guarantee the safe use of eugenol and pulegone for both humans and animals, this study addressed, for the first time, the effects of these compounds, at low doses (chronic toxicity) and high doses (acute toxicity), in laboratory animals. Thirty-five FVB/n female mice were randomly assigned to seven groups (n = 5): group I (control, non-additive diet); group II (2.6 mg of eugenol + 2.6 mg of pulegone); group III (5.2 mg of eugenol + 5.2 mg of pulegone); group IV (7.8 mg of eugenol + 7.8 mg of pulegone); group V (7.8 mg of eugenol); group VI (7.8 mg of pulegone); and group VII (1000 mg of eugenol + 1000 mg of pulegone). The compounds were administered in the food. Groups I to VI were integrated into the chronic toxicity study, lasting 28 days, and group VII was used in the acute toxicity study, lasting 7 days. Animals were monitored to assess their general welfare. Water and food intake, as well as body weight, were recorded. On the 29th day, all animals were euthanized by an overdose of ketamine and xylazine, and a complete necropsy was performed. Blood samples were collected directly from the heart for microhematocrit and serum analysis, as well as for comet assay. Organs were collected, weighed, and fixed in formaldehyde for further histological analysis and enzymatic assay. Eugenol and pulegone induced behavioral changes in the animals, namely in the posture, hair appearance and grooming, and in mental status. These compounds also caused a decrease in the animals’ body weight, as well as in the food and water consumption. A mortality rate of 20% was registered in the acute toxicity group. Both compounds modulated the serum levels of triglycerides and alanine aminotransferase. Eugenol and pulegone induced genetic damage in all animals. Eugenol increased the activity of the CAT enzyme. Both compounds increased the GR enzyme at the highest dose. Moreover, pulegone administered as a single compound increased the activity of the GST enzyme. Histopathological analysis revealed inflammatory infiltrates in the lungs of groups II, III, and IV. The results suggest that eugenol and pulegone may exert beneficial or harmful effects, depending on the dose, and if applied alone or in combination

    Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    Get PDF
    Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1-4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions:Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition
    corecore