594 research outputs found

    Spectroscopy of 50^{50}Sc and ab initio calculations of B(M3)B(M3) strengths

    Full text link
    The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in 50^{50}Sc following the β\beta-decay of 50^{50}Ca. Branching ratios were determined from the measured γ\gamma-ray intensities, and angular correlations of γ\gamma rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an M3M3 transition with a B(M3)B(M3) strength of 13.6(7)\,W.u. has been confirmed. We compare with the first {\it ab initio} calculations of B(M3B(M3) strengths in light and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and M3M3 operator. The experimental data are well reproduced for isoscalar M3M3 transitions when using bare gg-factors, but the strength of isovector M3M3 transitions are found to be underestimated by an order of magnitude

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    Global estimates of mineral dust aerosol iron and aluminum solubility that account for particle size using diffusion-controlled and surface-area-controlled approximations

    Get PDF
    Mineral aerosol deposition is recognized as the dominant source of iron to the open ocean and the solubility of iron in the dust aerosol is highly variable, with measurements ranging from 0.01–80%. Global models have difficulty capturing the observed variations in solubility, and have ignored the solubility dependence on aerosol size. We introduce two idealized physical models to estimate the size dependence of mineral aerosol solubility: a diffusion‐controlled model and a surface‐area‐controlled model. These models produce differing time‐ and space‐varying solubility maps for aerosol Fe and Al given the dust age at deposition, size‐resolved dust entrainment fields, and the aerosol acidity. The resulting soluble iron deposition fluxes are substantially different, and more realistic, than a globally uniform solubility approximation. The surface‐area‐controlled solubility varies more than the diffusion‐controlled solubility and better captures the spatial pattern of observed solubility in the Atlantic. However, neither of these two models explains the large solubility variation observed in the Pacific. We then examine the impacts of spatially variable, size‐dependent solubility on marine biogeochemistry with the Biogeochemical Elemental Cycling (BEC) ocean model by comparing the modeled surface ocean dissolved Fe and Al with observations. The diffusion‐based variable solubility does not significantly improve the simulation of dissolved Fe relative to a 5% globally uniform solubility, while the surface‐area‐based variable solubility improves the simulation in the North Atlantic but worsens it in the Pacific and Indian Oceans

    Using legume-based mixtures to enhance the nitrogen use efficiency and economic viability of cropping systems - Final report (LK09106/HGCA3447)

    Get PDF
    As costs for mineral fertilisers rise, legume-based leys are recognised as a potential alternative nitrogen source for crops. Here we demonstrate that including species-rich legume-based leys in rotations helps to maximise synergies between agricultural productivity and other ecosystem services. By using functionally diverse plant species mixtures, these services can be optimised and fine-tuned to regional and farm-specific needs. Replicated field experiments were conducted over three years at multiple locations, testing the performance of 12 legume species and 4 grass species sown in monocultures, as well as in a mixture of 10 of the legumes and all 4 grasses (called the All Species Mix, ASM). In addition, we compared this complex mixture to farmer-chosen ley mixtures on 34 sites across the UK. The trials showed that there is a large degree of functional complementarity among the legume species. No single species scored high on all evaluation criteria. In particular, the currently most frequently used species, white clover, is outscored by other legume species on a number of parameters such as early development and resistance to decomposition. Further complementarity emerged from the different responses of legume species to environmental variables, with soil pH and grazing or cutting regime being among the more important factors. For example, while large birdsfoot trefoil showed better performance on more acidic soils, the opposite was true for sainfoin, lucerne and black medic. In comparison with the monocultures, the ASM showed increased ground cover, increased above-ground biomass and reduced weed biomass. Benefits of mixing species with regard to productivity increased over time. In addition, the stability of biomass production across sites was greater in the ASM than in the legume monocultures. Within the on-farm trials, we further found that on soils low in organic matter the biomass advantage of the ASM over the Control ley was more marked than on the soils with higher organic matter content. Ecological modelling revealed that the three best multifunctional mixtures all contained black medic, lucerne and red clover. Within the long term New Farming Systems (NFS) rotational study, the use of a clover bi-crop showed improvement to soil characteristics compared to current practice (e.g. bulk density and water infiltration rate). Improvements in wheat yield were also noted with respect to the inclusion of a clover bi-crop in 2010, but there was evidence of a decline in response as the N dose was increased. Cumulatively, over both the wheat crop and the spring oilseed rape crop, the clover bi-crop improved margin over N. The highest average yield response (~9%) was associated with the ASM legume species mix cover cropping approach

    Estimating the Benthic Efflux of Dissolved Iron on the Ross Sea Continental Shelf

    Get PDF
    Continental margin sediments provide a potentially large but poorly constrained source of dissolved iron (dFe) to the upper ocean. The Ross Sea continental shelf is one region where this benthic supply is thought to play a key role in regulating the magnitude of seasonal primary production. Here we present data collected during austral summer 2012 that reveal contrasting low surface (0.08 +/- 0.07 nM) and elevated near-seafloor (0.74 +/- 0.47 nM) dFe concentrations. Combining these observations with results from a high-resolution physical circulation model, we estimate dFe efflux of 5.8 x 10(7) mol yr(-1) from the deeper portions (\u3e400m) of the Ross Sea continental shelf; more than sufficient to account for the inferred winter reserve dFe inventory at the onset of the growing season. In addition, elevated dFe concentrations observed over shallower bathymetry suggest that such features provide additional inputs of dFe to the euphotic zone throughout the year

    Attenuation technique for measuring sediment displacement levels

    Get PDF
    A technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels is described. In certain regimes, the method may also be employed to provide measurements of sediment layer thickness as a function of time. The method uses a uniform light source placed beneath the layer, consisting of transparent particles, so that the intensity of light at a point on the surface of the layer can be related to the depth of particles at that point. A set of experiments, using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism, are described to test and illustrate the technique

    Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic Ocean

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 989-1010, doi:10.4319/lo.2012.57.4.0989.We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the subtropical gyre. Metal concentrations were elevated along the coastal shelf, likely due to reductive dissolution and resuspension of particulate matter. Linear relationships between cobalt, N2O, and O2, as well as low surface aluminum supported a coastal rather than atmospheric cobalt source. Lateral advection coupled with upwelling, biological uptake, and remineralization delivered these metals to the basin, as evident in two zonal transects with distinct physical processes that exhibited different metal distributions. Scavenging rates within the coastal plume differed for the three metals; iron was removed fastest, manganese removal was 2.5 times slower, and cobalt scavenging could not be discerned from water mass mixing. Because scavenging, biological utilization, and export constantly deplete the oceanic inventories of these three hybrid-type metals, point sources of the scale observed here likely serve as vital drivers of their oceanic cycles. Manganese concentrations were elevated in surface waters across the basin, likely due to coupled redox processes acting to concentrate the dissolved species there. These observations of basin-scale hybrid metal plumes combined with the recent projections of expanding oxygen minimum zones suggest a potential mechanism for effects on ocean primary production and nitrogen fixation via increases in trace metal source inputs.This research was supported US National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-1031271), the Center for Microbial Research and Education, the Gordon and Betty Moore Foundation, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute
    corecore