187 research outputs found

    Aerodynamics for the ADEPT SR-1 Flight Experiment

    Get PDF
    Adaptable, Deployable, Entry, and Placement Technology (ADEPT) is a combination of a heatshield and an aerodynamic decelerator for atmospheric entry applications. The ADEPT Sounding Rocket (SR)-1 mission was a suborbital flight experiment of an 0.7 m-diameter ADEPT to verify system-level performance and to characterize dynamic stability behavior. The aerodynamic database for ADEPT SR-1 was constructed from non-continuum and continuum flowfield computations, along with data from recent ADEPT ground testing and the IRVE-3 flight test vehicle. High-altitude (free-molecular and transitional regimes) data were generated using DSMC methods. Pre-flight predictions of continuum static aerodynamics coefficients were derived from Reynolds-Averaged Navier-Stokes solutions at conditions along a design trajectory, with comparisons to available ground test data of the nano-ADEPT geometry. Dynamic pitch damping characteristics were taken from functional forms developed for the IRVE-3 flight test vehicle through ballistic range testing. Comparison of pre-flight predictions to post-flight reconstruction of aerodynamic force and moment coefficients is presented

    Radiation Modeling for the Reentry of the Hayabusa Sample Return Capsule

    Get PDF
    Predicted shock-layer emission signatures during the reentry of the Japanese Hayabusa capsule are presented and compared with flight measurements conducted during an airborne observation mission in NASA's DC-8 Airborne Laboratory. For selected altitudes at 11 points along the flight trajectory of the capsule, lines of sight were extracted from flow field solutions computed using the in-house high-fidelity CFD code, DPLR. These lines of sight were used as inputs for the line-by-line radiation code NEQAIR, and emission spectra of the air plasma were computed in the wavelength range from 300 nm to 1600 nm, a range which covers all of the different experiments onboard the DC-8. In addition, the computed flow field solutions were post-processed with the material thermal response code FIAT, and the resulting surface temperatures of the heat shield were used to generate thermal emission spectra based on Planck radiation. Both spectra were summed and integrated over the flow field. The resulting emission at each trajectory point was propagated to the DC-8 position and transformed into incident irradiance to be finally compared with experimental data

    Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    Get PDF
    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and included in the development of the aerodynamic database uncertainty for pitching moment

    Crack Detectability and Durability of Coaxial Cable Sensors in Reinforced Concrete Bridge Applications

    Get PDF
    The working mechanism and the measurement principle of topology-based crack sensors made of coaxial cables are briefly reviewed. The sensitivity, spatial resolution, and ruggedness of two coaxial cable sensors, respectively made of rubber and Teflon dielectric materials, were compared and validated with laboratory testing of a 4/5-scale, T-shaped, reinforced concrete beam-column specimen. Two Teflon sensors were installed on one of the solid decks of a three-span continuous highway bridge to investigate their durability and measurement repeatability. Laboratory tests indicated that both types of sensors have high sensitivity, but the Teflon sensor has a higher spatial resolution and a negligible spillover effect of any significant cracks. At a 90-degree bend, however, the Teflon sensor is more susceptible than the rubber sensor to the rubbing action of the outer conductor of a coaxial cable against its dielectric layer. No cracks were observed during the field load tests of the instrumented bridge. Both sensors indicated high durability in realworld application but a certain variation of waveforms was measured over a period of 5 years because of the use of different instruments. Future research is directed to develop an online calibration of crack sensors with a small portion of built-in standard cable at the end of the cable sensor

    Prospects for multi-omics in the microbial ecology of water engineering

    Get PDF
    Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions – including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.BT/Industriele Microbiologi

    Current Status on Radiation Modeling for the Hayabusa Re-entry

    Get PDF
    On June 13, 2010 the Japanese Hayabusa capsule performed its reentry into the Earths atmosphere over Australia after a seven year journey to the asteroid Itokawa. The reentry was studied by numerous imaging and spectroscopic instruments onboard NASA's DC-8 Airborne Laboratory and from three sites on the ground, in order to measure surface and plasma radiation generated by the Hayabusa Sample Return Capsule (SRC). Post flight, the flow solutions were recomputed to include the whole flow field around the capsule at 11 points along the reentry trajectory using updated trajectory information. Again, material response was taken into account to obtain most reliable surface temperature information. These data will be used to compute thermal radiation of the glowing heat shield and plasma radiation by the shock/post-shock layer system to support analysis of the experimental observation data. For this purpose, lines of sight data are being extracted from the flow field volume grids and plasma radiation will be computed using NEQAIR [4] which is a line-by-line spectroscopic code with one-dimensional transport of radiation intensity. The procedures being used were already successfully applied to the analysis of the observation of the Stardust reentry [5]

    What Makes Theatrical Performances Successful in China's Tourism Industry?

    Get PDF
    This study aims to explore the factors affecting the success of a popular tourist product, namely, theatrical performance, within the context of China's tourism industry and develop a model based on previously successful productions. Using qualitative software, 22 Chinese-language articles on theatrical performances are analyzed to generate a list of success factors, classified as internal and external. The internal factors are storyline and performing, market positioning and marketing strategy, investment and financial support, operation and management, performing team, outdoor venue, indoor/outdoor stage supporting facilities, continuous improvement, and production team. The external factors are collaboration between cultural industries and local tourism, government support, privatization, and social and cultural effect. This study also provides suggestions for the future development of theatrical performances in China

    Reduction of VLDL Secretion Decreases Cholesterol Excretion in Niemann-Pick C1-Like 1 Hepatic Transgenic Mice

    Get PDF
    An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE

    The South, the suburbs, and the Vatican too: explaining partisan change among Catholics

    Get PDF
    This paper explains changes in partisanship among Catholics in the last quarter of the 20th Century using a theory of partisan change centered on the contexts in which Catholics lived. Catholics were part of the post-New Deal Democratic coalition, but they have become a swing demographic group. We argue that these changes in partisanship are best explained by changes in elite messages that are filtered through an individual’s social network. Those Catholics who lived or moved into the increasingly Republican suburbs and South were the Catholics who were most likely to adopt a non-Democratic partisan identity. Changes in context better explain Catholic partisanship than party abortion policy post Roe v. Wade or ideological sorting. We demonstrate evidence in support of our argument using the ANES cumulative file from 1972 through 2000

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
    corecore